
Jenkins pipeline integration

Overview
Jenkins is an orchestration tool that is mostly used in CI/CD scenarios. Jenkins allows you to configure it
using the UI available or to use pipeline as code.

Xray has made available plugins and tasks that enable you to configure and use the tasks to import tests
results to Xray or to import/export cucumber features directly from Jenkins.

Prerequisites

For this example we will use enkins plugin, .J that will allow your Jenkins to ship test results directly to Xray

 What you need:

A Jira instance with Xray installed and configured
A Jenkins server with the Xray plugin installed

Jenkins Snippet Generator
Jenkins as made available a Snippet Generator that will assist in the configuration of the pipeline.

You have two ways of reaching the Snippet Generator: either when creating a new pipeline through the
UI or editing a pipeline already created.

Creating a new pipeline

Using the UI you can choose to create a new pipeline and choose the Pipeline type, once you have
provided a name for the pipeline and pressed the OK button you will be taken to the configuration panels.

What you'll learn

How to configure the Jenkins pipeline
Know and understand the different tasks available
Validate that the test results are available in Jira

Source-code for this tutorial

code is available in GitHub

Overview
Prerequisites
Jenkins Snippet Generator
Examples

Pipeline step importing Junit
Create new Test Execution
Updating Test Execution

Pipeline step importing Junit multipart
Pipeline step importing Junit multipart (inline JSON)
Pipeline steps for Cucumber workflow (Xray as master)

Create new Test Execution
Updating Test Execution

Pipeline steps for Cucumber workflow using multipart endpoint (Xray as master)
Tips

https://playwright.dev/docs/test-intro/
https://playwright.dev/docs/test-intro/
https://github.com/Xray-App/tutorial-jenkins-pipeline

Whenever scrolling down or choosing the tab, you will see a link called Pipeline Pipeline Syntax
that will take you to the Snippet Generator.

Once there, press the Sample Step dropdown to see all options you have available.

Edit an existent pipeline

If you already have a Jenkinsfile being imported from your source control or if you have already created
the pipeline you can reach the Snippet Generator using the left menu entry called Pipeline Syntax in the
configuration of your build.

This will take us to the same configuration panel of the Snippet Generator.

Choose Step: General Build Step

You can see that all the steps available will appear in the dropdown.Build Step

We can see the three steps available:

Xray: Cucumber Features Export Task - Export feature files from Jira to your Jenkins
job workspace
Xray: Cucumber Features Import Task - Import feature files from Jenkins to Jira
Xray: Results Import Task - Import test results (Junit, NUnit, etc...) from your Jenkins job
to Jira

You can find more information on the possible values for the parameters of each task .here

In this example we want to import the test results back to Xray so we have chosen Xray: Results
.Import Task

https://docs.getxray.app/display/XRAYCLOUD/Integration+with+Jenkins

After filling all the default parameters we can generate the script as a test step ready to be included in
your pipeline definition.

Examples
In each example we will have the test result file used, the test code (when necessary) and the Jenkinsfile
that you can use as a template for your case.

We will showcase different ways to import test results using the Xray Jenkins task and also different
workflows that can be used to handle Cucumber tests.

Pipeline step importing Junit

In this case we are importing Junit test results to Xray, this step should be inserted after the test
execution step.

This is the step that will import the Junit test results to Xray using the task . XrayImportBuilder

Create new Test Execution

In this first example we are creating a new Test Execution in each import with the defined and fixVersion r
.evision

Jenkinsfile

stage('Import results to Xray') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/junit',
importFilePath: 'xray-report.xml', importToSameExecution: 'true',
projectKey: '<PROJECT_KEY>', fixVersion: '1.2', revision: 'commit
eee455', serverInstance: '<SERVER_INSTANCE>'])
 }
 }

Updating Test Execution

You can also update a pre-existent Test Execution with the test results as you can see below.

Jenkinsfile

stage('Import results to Xray') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/junit',
importFilePath: 'xray-report.xml', importToSameExecution: 'true',
projectKey: '<PROJECT_KEY>', testExecKey: '<TEST_EXECUTION_KEY>',
fixVersion: '1.2', revision: 'commit eee455', serverInstance:
'<SERVER_INSTANCE>'])
 }
 }

Pipeline step importing Junit multipart

If you need to define more example, labels, summary, components, information to the Test Execution, for
environments or associate it to a Test Plan you can by using the multipart request that receives the test
result file and two extra files were we can define those details.

Jenkinsfile

 stages {
 stage('Import results to Xray (multipart)') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/junit
/multipart', importFilePath: 'importJunitMultipart/*.xml',
importToSameExecution: 'true', projectKey: '<PROJECT_KEY>',
serverInstance: '<SERVER_INSTANCE>', importInParallel: 'true', importInfo:
'importJunitMultipart/my-test-exec-info.json', testImportInfo:
'importJunitMultipart/my-test-import-info.json', inputInfoSwitcher:
'filePath', inputTestInfoSwitcher: 'filePath'])
 }
 }
 }

Notice that we are including 4 new parameters:

importInfo - Where you define extra labels and the project to associate this run with.
inputInfoSwitcher - Defining the origin of the that can have two values: importInfo file

 when you are including the information in form of a file or if you are Path fileContent
including the content inline.
testImportInfo - Where you define extra parameters such as summary, associate with
components or environments.
inputTestInfoSwitcher - Defining the origin of the that can have two testImportInfo
values: when you are including the information in form of a file or if filePath fileContent
you are including the content inline (we have an example of this usage in the next section).

Resuming: in the field we are passing the below file defining the project we want to importInfo
associate the execution and adding a label.

For this example we are using pre defined and that components environments need to
exist in order to assure the import will be successful.

You can adapt to your reality and replace the and by the ones components environments
that exist in your project or create them, for this case we have two components: and Pets Mod

 and referring to one environment: .els firefox

my-test-exec-info.json

{
 "fields": {
 "project": {
 "key": "<PROJECT_KEY>"
 },
 "labels" : ["firefox"]
 }
}

In the we are defining a new summary, associating to two components and one Test testImportInfo
Plan and defining the environment.

my-test-import-info.json

{
 "fields": {
 "project": {
 "key": "EWB"
 },
 "summary": "Login validation [Firefox]",
 "issuetype": {
 "name": "Test Execution"
 },
 "components" : [
 {
 "name":"Pets"
 },
 {
 "name":"Modules"
 }
]
 }
}

Pipeline step importing Junit multipart (inline JSON)

The difference between this request to import results and the previous is that instead of passing the the
content of the in a file we are defining it inline. ImportInfo

Notice that is defined inline in the Jenkins stage, this will allow, for example, to use pre importInfo
defined Jenkins variables such as ${BUILD_NUMBER}.

Requirements

For this example we are using that exist in the Project: . If you Components Pets, Modules
do not have them defined please do in order to have this example working (or redefine the
values in the file to Components that exist in your Project).

We are also using that must exist in the project before performing the upload, environments
in our case: .firefox

Jenkinsfile

 stages {
 stage('Import results to Xray (multipart)') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/junit
/multipart', importFilePath: 'importJunitMultipartInline/*.xml',
importToSameExecution: 'true', projectKey: '<PROJECT_KEY>',
serverInstance: '<SERVER_INSTANCE>', importInParallel: 'true',
testImportInfo: 'importJunitMultipartInline/my-test-import-info.json',
inputTestInfoSwitcher: 'filePath', inputInfoSwitcher: 'fileContent',
importInfo: """{
 "fields": {
 "project": {
 "key": "<PROJECT_KEY>"
 },
 "summary": "Test Execution for java junit ${BUILD_NUMBER}",
 "issuetype": {
 "name": "Test Execution"
 },
 "components" : [
 {
 "name":"Pets"
 },
 {
 "name":"Modules"
 }
]
 }
 }"""])
 }
 }
 }

The content of the second file remains identical.

my-test-exec-info.json

{
 "fields": {
 "project": {
 "key": "<PROJECT_KEY>"
 },
 "summary": "Login validation [Firefox]",
 "issuetype": {
 "name": "Test Execution"
 },
 "components" : [
 {
 "name":"Pets"
 },
 {
 "name":"Modules"
 }
]
 }
}

Pipeline steps for Cucumber workflow (Xray as master)

When using Cucumber tests you need to define the flow you want to use, this is primarily decided by the
place you are editing you cucumber scenarios. You can have two options, one is to define and edit
scenarios in Xray (in your Jira instance), if you do so this means that all changes in scenarios are done in
Xray and then exported to your IDE or CI/CD tool. The second option is to define the scenarios in your
code, in this case each time you create or edit scenarios in your code you need to keep Xray
synchronized so you need to import the changes into Xray.

For the example we are considering Xray as the source of truth, so all changes of scenarios are done in
Xray and exported to Jenkins to be executed.

Create new Test Execution

In this flow centred in Xray we need an extra step to extract the scenario from Xray to Jenkins (where we
have previously extracted the code also), then we will run the tests and import the test execution results
back to Xray into a new Test Execution.

The first stage is to export the feature file from Xray to Jenkins, for that we define the server instance that
we want to extract those features from and the issue (or issues list separated by ;), this can be also done
using a Jira filter (for that you need to replace with and pass the filter key).issues filter

More information about the export stage .here

Jenkinsfile

 stages {
 stage('Export feature files') {
 steps {
 step([$class: 'XrayExportBuilder', issues: '<CUCUMBER_ISSUE_KEY>',
serverInstance: '<SERVER_INSTANCE>'])
 }
 }
 stage('Run tests') {
 steps {
 echo 'Testing..'
 }
 }
 stage('Import results to Xray') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/cucumber',
importFilePath: 'CucumberFlowXrayMasterNewTestExec/login-feature.json',
importToSameExecution: 'true', projectKey: '<PROJECT_KEY>', fixVersion:
'1.2', revision: 'commit eee455', serverInstance: '<SERVER_INSTANCE>'])
 }
 }
 }

The last stage is a normal import of the test results to Xray, this time using cucumber end point as we are
importing cucumber json results.

Updating Test Execution

If you want to update a Test Execution instead of creating a new one you must include the parameter: te
, indicating what is the Test Execution issue that will updated with the results uploaded.stExecKey

Like the previous example we are extracting the scenarios defined in Xray into Jenkins (where the code
is also present), executing the tests and importing the test results into a pre-existent Test Execution.

Notice that for this example to work, you will need to have a cucumber scenario in Xray that
you can then export.

https://docs.getxray.app/display/XRAYCLOUDIntegration+with+Jenkins#IntegrationwithJenkins-Step:XrayExportBuilder(exportcucumberfeaturesfromJiratoJenkins)

Jenkinsfile

 stages {
 stage('Export feature files') {
 steps{
 step([$class: 'XrayExportBuilder', issues:
'<CUCUMBER_ISSUE_KEY>', serverInstance: '<SERVER_INSTANCE>'])
 }
 }
 stage('Run tests') {
 steps {
 echo 'Testing..'
 }
 }
 stage('Import results to Xray') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/cucumber',
importFilePath: 'CucumberFlowXrayMasterUpdateTestExec/login-feature.json',
importToSameExecution: 'true', projectKey: '<PROJECT_KEY>', testExecKey:
'<TEST_EXECUTION_KEY>', fixVersion: '1.2', revision: 'commit eee455',
serverInstance: '<SERVER_INSTANCE>'])
 }
 }
 }

Pipeline steps for Cucumber workflow using multipart endpoint
(Xray as master)

When using Cucumber tests you need to define the flow you want to use, this is primarily decided by the
place you are editing you cucumber scenarios. You can have two options, one is to define and edit
scenarios in Xray (in your Jira instance), if you do so this means that all changes in scenarios are done in
Xray and then exported to your IDE or CI/CD tool. The second option is to define the scenarios in your
code, in this case each time you create or edit scenarios in your code you need to keep Xray
synchronized so you need to import the changes into Xray.

For the example we are considering the first option described, Xray as master, so all changes of
scenarios are done in Xray and exported to Jenkins to be executed.

What differs from the previous example is that in this one we want to define some extra information to be
added to Xray, such as adding labels, defining a summary or associate to pre-existent components. This
is only achievable using the multipart endpoint where we can define two extra file with that extra
information.

As previously mentioned, we will have a step to extract the cucumber scenarios from Xray into your
Jenkins, one step to execute the tests, and one final step to import the test results back into Xray. In this
last importation of results we are using the multipart endpoint that allows adding two files with extra
information.

Requirements

Notice that for this example to work you will need to have a cucumber scenario in Xray
available to export.

For this example we are using that exist in the Project: . If you Components Pets, Modules
do not have them defined please do in order to have this example working (or redefine the
values in the file to Components that exist in your Project).

We are also using that must exist in the project before performing the upload, environments
in our case: .firefox

Jenkinsfile

 stages {
 stage('Export feature files') {
 steps{
 step([$class: 'XrayExportBuilder', issues:
'<CUCUMBER_ISSUE_KEY>', serverInstance: '<SERVER_INSTANCE>'])
 }
 }
 stage('Run tests') {
 steps {
 echo 'Testing..'
 }
 }
 stage('Import results to Xray') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/cucumber
/multipart', importFilePath: 'CucumberFlowXrayMasterMultipart/login-
feature.json', importToSameExecution: 'true', projectKey: '<PROJECT_KEY>',
fixVersion: '1.2', revision: 'commit eee455', importInfo: 'my-test-exec-
info.json', testImportInfo: 'my-test-import-info.json',
inputTestInfoSwitcher: 'filePath', inputInfoSwitcher: 'filePath',
serverInstance: '<SERVER_INSTANCE>'])
 }
 }
 }

One of the extra files contains the project that we want to use in Jira and a labels list that we want to
associate with the execution.

my-test-exec-info.json

{
 "fields": {
 "project": {
 "key": "<PROJECT_KEY>"
 },
 "labels" : ["firefox"]
 }
}

The other file allows to define a summary, associate to one or a list of pre-existent components. We have
special field called where we define the Test Plan we want to associate to this test run and xrayFields
define an environment (or list of environments) to be set in the execution.

my-test-import-info.json

{
 "fields": {
 "project": {
 "key": "<PROJECT_KEY>"
 },
 "summary": "Login validation [Firefox]",
 "issuetype": {
 "name": "Test Execution"
 },
 "components" : [
 {
 "name":"Pets"
 },
 {
 "name":"Modules"
 }
]
 }
}

Tips
after results are imported in Jira, Tests can be linked to existing requirements/user stories, so
you can track the impact of their coverage.
results from multiple builds can be linked to an existing Test Plan in order to facilitate the
analysis of test result trends across builds.
results can be associated with a Test Environment, in case you want to analyze coverage and
test results by that environment later on. A Test Environment can be a testing stage (e.g. dev,
staging, prepod, prod) or an identifier of the device/application used to interact with the system
(e.g. browser, mobile OS).

Overview
Prerequisites
Jenkins Snippet Generator
Examples

Pipeline step importing Junit
Create new Test Execution
Updating Test Execution

Pipeline step importing Junit multipart
Pipeline step importing Junit multipart (inline JSON)
Pipeline steps for Cucumber workflow (Xray as master)

Create new Test Execution
Updating Test Execution

Pipeline steps for Cucumber workflow using multipart endpoint (Xray as master)
Tips

	Jenkins pipeline integration

