Xporter Template: Test Execution Report

® Purpose
® Qutput Example(s)
® How to use
© Source data
© Qutput format
© Report assumptions
O Usage examples
= Export all details obtained in the context of a given Test Execution
® Understanding the report
© Layout
® "Introduction” section
® Document Overview
Test Execution Details
Requirements covered by the Tests in this Test Execution
Overall Execution Status
Defects
® Test Runs
® Test Run Details
® Test Executions Summary
© Execution Defects
Execution Evidences
Comment
Test Description
Test Issue Attachments
Preconditions
Parameters
Iterations

O O 0O O O 0 O

Iteration Overall Execution Status
Test Run details

Iteration precondition definition
Iteration parameters details
Iteration Test Step Details

Test Details

Requirements linked with this test

= Appendix A: Approval
® Customizing the report
© Sections that can be hidden or shown
© Adding or removing information to/from the report
= Exercise: add a field from the related Test issue
® Performance
® Known limitations

Purpose

This report enables you to extract details of a Test Execution, such as the Tests that are part of it, Defects, Requirements and iterations details, so that you
can generate a document report focusing in what matter the most for your team, or even share it with someone else that hasn't access to Jira.

Possible usage scenarios:

see all the requirements covered by the Tests in the Test Execution

see all the defects linked to the Tests in this Test Execution

see an overall status summary of the Test Execution

check a specific detail of a Test Runs (like evidences, attachments, assignee, etc)

Output Example(s)

The following screenshots shows an example of the sections you should expect in this report.

Project Name: Bookstore
Issue: BOOK-31
Prepared By: Xpand IT Admin

Document Date: 28/11/2022

8 CONFIDENTIAL

Egg

TEST EXECUTION

Test Execution for Test Plan BOOK-30

1. Introduction

1.1. Document Overview
This Test Report provides a summary of a test tion. This has been i from the test management platform.

1.2. Test Execution BOOK-31 Details

Description None

Begin Date 18-02-2019 14:03:00

End Date 22-02-2019 14:03:00

Revision 65d64uyg7tér

Test Environments [chrome, windows]

Test Plan BOOK-30

1.3. Requir d by this Test E. ti

Key Summary Workflow Status Test Status
As a visitor, | can search for

BOOK-7 books in the store Resolved NOK
As a visitor, | can view all

BOOK-11 the books in my shopping [Resolved OK
basket
As a visitor, | can manage

BOOKS my Shopping Basket Open NOK
As a visitor, | can remove

BOOK-10 books from my shopping Resolved OK
basket

BOOK-31- TEST EXECUTION FOR TEST PLAN BOOK-30

1.4. Overall Execution Status
Of the 16 Test Runs contained on BOOK-31:

Status #TestRuns Percentage
TODO 1

6.2%
EXECUTING
PASS 13

81.3 %
FAIL

125 %
ABORTED 0

0.0 %

1.6. Test Runs

Rank Key Summary Test Type #Req | #Def ;::; Assignee | Status

1 BOO0K- | Test avisitor can fiterthe search resut Gucumber 1 Jo | B9OK | aamin
2 gg)OK— I:;:vz:g:i(or can do a valid search with multiple Cucumber 1 0 xadmin
3 gé)OK- L:;:vzr\éisimr can do a valid search with a single Cucumber 1 0 xadmin
4 ZB.‘?OK- l::ll(:tvisitor can view all the books in his shopping Cucumber 2 0 xadmin
5 2400K- ;::L;:sitors can remove books from their shopping Cucumber 2 0 xadmin
6 2? OK- | Test visitors can add books to their shopping basket | Cucumber 2 1 xadmin
7 ggo»(- Test visitors can navigate to the book details page Cucumber 1 0 xadmin
8 zBé)OK- Test Checkout with incorrect delivery details Cucumber 1 0 xadmin
9 BOOK- | Test avisior can checkout tems in his basket Gucumber 1o xadmin
10 155 OK- | Test a visitor can change his locale Cucumber 1 0 gg K- | vadmin
1 ??OK' Test a logged in visitor can edit the default address | Cucumber 2 0 ggox- xadmin
12 %)OK' Test a logged in visitor can edit the account details Cucumber 2 0 ggOK' xadmin
13 BOOK- | Test logged in visitors can logout from their account | Cucumber 2 [0 |59 | xadmin

2. Test Run Details

2.1. Bookstore / Test Execution: BOOK-31 / Test: BOOK-28 - Test a visitor can filter the search result
Execution Status A [Executed By | Started On [Finished On | Versions [Revisi]
xadmin | xadmin | 25-02-2019 14:07:47 | 25-02-2019 14:07:47 | 1.0 | 65d64uygrter |

21.1. Execution Defects
There are 0 Execution Defects on this Test Run.

21.2. Execution Evidences
There are 0 Execution Evidences on this Test Run.

2 B e/ TestE ion: BOOK-31/ Test: BOOK-23 - Test visitors can add books to their shoppi
Execution Status Assignee Executed B Started On [Finished On [Versions | Revision
xadmin xadmin 25-02-2019 14:10:46 | 25-02-2019 14:10:46 | 1.0 | 65d64uyq7t6r

2.6.1. Execution Defects

Key [Summary |
BOOK-32 [Error when adding Book to shopping basket |

2.6.2. Execution Evidences

File Name Author | File Size Evidence
funny-error-
messages.] xadmin | 402 kB

2.6.3. Comment
Error when trying to add book with title "There is something strange with this book $%&" to the shopping basket

2.6.4. TestDescription
None.

3. Appendix A: Approval

The undersigned acknowledge they have reviewed the Test Execution and agree with the approach it presents. Changes to this Test Execution will be

coordinated with and approved by the igned or their

Signature: Date:

Print Name:

Title:

Role:

How to use

This report can be generated from the Issue details screen.

G) Learn more

General information about all the existing places available to export from, and how to perform it, is available in the Exporting page.

Source data
This report is applicable to:

® 1 Test Execution issue

Output format

The standard output format is .DOCX, so you can open it in Microsoft Word, Google Docs, and other tools compatible with this format.

Report assumptions
The template has a set of assumptions that you make sure that your Jira/Xray environment complies with:

1. Issue types having these names
a. "Test", "Test Set", "Test Plan", "Test Execution"

If any of these assumptions is not met, you need to update the template accordingly.

Usage examples

Export all details obtained in the context of a given Test Execution

1. open the Test Execution issue and export it using this template

Understanding the report

The report shows detailed information about the Test Execution provided.

Layout
The report is composed by several sections. Two major sections are available: Introduction and Test Runs details.

By default, and to avoid overload/redundancy of information, only the "Introduction” section will be rendered; you can change this behavior on the template
(more info ahead).

"Introduction" section
This section is divided into 6 sub-sections to have an overview about the Test Plan we have just exported:

. Document Overview

. Test Execution Details

. Requirements covered by the Tests in this Test Execution
Overall Execution Status

. Defects

. Test Runs

curwWNPR

Each of these sections is explained below.

Document Overview

Brief description of what you will find in this report and how it was generated.

Test Execution Details

https://confluence.getxray.app/display/XPORTERCLOUD/Exporting

In this section we are extracting the Test Plan key in the header and show the Begin and End Date (formatted as demonstrated below), the Summary and
the Description present in the Test Plan.

Field Description Sample Code
Description Description of the Test Execution (as this field accepts wiki markup we will use "wiki:" in the ${wiki:Description}
code to be interpreted by the document)

Begin Date Timestamp of the Begin Date field present in the Test Execution (with proper format) ${dateformat("dd-MM-yyyy HH:mm:
ss"):Begin Date}

End Date Timestamp of the End Date field present in the Test Execution (with proper format) ${dateformat("dd-MM-yyyy HH:mm:
ss"):End Date}

Revision Revision of the Test Execution ${Revision}

Test Test Environments associated to this Test Execution ${Test Environments}

Environments

Test Plan Test Plan associated with this Test Execution (if any) ${Test Plan}

The output will have the following information, notice that as the Description field support wiki markup we are using "wiki:" keyword so that it is correctly
interpreted.

1.2. Test Execution BOOK-31 Details

Description None

Begin Date 18-02-2019 14:03:00
End Date 22-02-2019 14:03:00
Revision 65d64uyg7t6r

Test Environments [chrome, windows]
Test Plan BOOK-30

Requirements covered by the Tests in this Test Execution

In this section we have an overview of all the requirements that are covered by Tests in this Test Plan, we extract the Key, Summary, Workflow and the Tes
t Status Status removing all the repeated entries.

In the Server version we have a query that fetches the Requirements linked with a Test: testRequirements(‘${Tests[n].Key}").

Field Description Sample Code
Key Key of the Requirement (in this case we are @{title=${TestRuns[n].Requirements[x].Key}|href=${BaseURL}/browse/${TestRuns[n].
adding it as link) Requirements[x].Key}}
Summary Summary of the Requirement ${wiki:TestRuns[n].Requirements[x]. Summary}
Workflow Workflow Status of the Requirement ${TestRuns[n].Requirements[x].Status}
Status
Coverage Status of the Test coverage of the Requirement = ${TestRuns[n].Requirements[x].Requirement Status}
Status

The requirements are listed in a table with the informations explained above.

1.3. Requirements covered by this Test Execution

Key Summary Workflow Status Coverage Status
BOOK-7 As a vi_sitor, | can search for Resolved NOK
—_— books in the store
As a visitor, | can view all
BOOK-11 the books in my shopping [Resolved OK
basket
BOOK-8 As a visitor, | can manage Open NOK

my Shopping Basket

As a visitor, | can remove
BOOK-10 books from my shopping Resolved OK
basket

Overall Execution Status

As the name suggests we have an overview about the executions of the Tests in this Test Execution, here you will have information about how many Test
Runs you have in this Test Execution and what are the statuses of their executions.

To obtain this information we are using:

Field Description Sample Code
TestsRunsC = The total number of Test Runs in this Test Execution ${TestsCount}
ount
#TestsRuns = To extract the count of the overall execution status per each <status> (TODO, EXECUTING, ${Overall Execution Status.
PASS, FAIL, ABORTED) <status>.Count}

Percentage To extract the percentage of the overall execution status per each <status> (TODO, EXECUTING, ${Overall Execution Status.
PASS, FAIL, ABORTED) <status>}

This will produce the following output:

14, Overall Executlon Status
Qrihe 16 Tesl Rung mmlained o BOOK-G1:

Siatus H¥TestRuns Percentage
TODO
EXECUTING
PASS 13

B3 %
FAIL 2

125 %
ABORTED o

0.0 %

Defects

In this section we are listing all the defects found that are associated with this Test Execution, we consider defects associated with TestRuns, defects in
Test Steps or defects found during the iterations. We do not print duplicates.

Field Description Sample Code
Key Key of the Defect
® TestRun
o @{title=${TestRuns[n].ExecutionDefects[d].Key}|href=${BaseURL}/browse/${TestRuns[n].ExecutionDefects[d].
Key}}

® TestSteps
o @f{title=${TestRuns[n].TestSteps[j].Defects[m].Key} href=${BaseURL}/browse/${TestRuns[n]. TestSteps[j].
Defects[m].Key}}
® |teration TestSteps
o @{title=${TestRuns[n].Iterationsit]. TestSteps[r].Defects[dc].Key} href=${BaseURL}/browse/${TestRuns[n].
Iterations]it]. TestSteps[r].Defects[dc].Key}}

Summ | Summary of the
ary Defect ® TestRun
o ${TestRuns[n].ExecutionDefects[d]. Summary}
® TestSteps
o ${TestRuns[n].TestSteps]j]. Defects[m].Summary}
® |teration TestSteps
o ${TestRuns[n].lterations][it]. TestSteps[r].Defects[dc]. Summary}

Priority = Priority of the
Defect ® TestRun
o ${TestRuns[n].ExecutionDefects[d].Priority}
® TestSteps
0 ${TestRuns[n].TestSteps[j].Defects[m].Priority}
® |teration TestSteps
o ${TestRuns[n].lterations]it]. TestSteps[r]. Defects[dc].Priority}

The Defects appear in the document as a table with information regarding the defects found during the executions of the Test Execution.

1.5. Defects
Key Summary Priority
BOOK-32 Error when adding Book to shopping basket Trivial
BOOK-510 Iteration global defect added Trivial
BOOK-502 global defect Trivial
Test Runs

In this section we have a table with information regarding the Test Runs in this Test Execution. You can find the following information about each Test Run:

Field Description Sample Code
Rank Rank of the Test Step ${TestRuns[n].Rank}
Key Key of the Test Run ${TestRuns[n].Key}
Summ | The Summary of the Test Run ${wiki:TestRuns[n].Summary}
ary

Test The type of Test that was executed in ${TestRuns[n].Test Type}
Type this Test Run

#Req Number of Requirements associated to = ${TestRuns[n].RequirementsCount}
this Test Run

#Def Calculation of the number of Defects %({var total=${TestRuns[n].ExecutionDefectsCount} + ${TestRuns[n].TestStepsDefectsCount}; var
associated to this Test Run total2="+total;var totalParts= total2.split("."); totalParts[0];}

Test Test Set Key (if this Test Run was part ${TestRuns[n].TestSets[ts].Key}
Sets of a Test Set)

Assign | Full name of the Assignee ${fullname:TestRuns[n].Assignee}
ee
Status = Status of the Test Run ${TestRuns[n].Execution Status}

This information is presented in a table as we can see below:

1.6. TestRuns

Test

Rank Key Summary Test Type #Req | #Def Sets Assignee | Status

1 ?gOK Test a visitor can filter the search result Cucumber 1 0 2&0K— xadmin
2 ??OK 'Ik':;;lir\éi:itor can do a valid search with multiple Cucumber 1 0 xadmin
3 ggOK 'Ik';e;\tlvzr\(/jisitor can do a valid search with a single Cucumber 1 0 xadmin
4 ESOOK 'llj':::(;visitor can view all the books in his shopping Cucumber 2 0 xadmin
5 ?‘?OK ;’::&;{sitors can remove books from their shopping Cucumber 2 0 xadmin
6 ESQOK Test visitors can add books to their shopping basket | Cucumber 2 1 xadmin
7 ?? OK Test visitors can navigate to the book details page Cucumber 1 0 xadmin
8 ZB(? Ok: Test Checkout with incorrect delivery details Cucumber 1 0 xadmin
9 ?;) OK Test a visitor can checkout items in his basket Cucumber 1 0 xadmin
10 l13§)OK Test a visitor can change his locale Cucumber 1 0 EgOK' xadmin

Some particularities to highlight a different behavior about the code needed to show the Tests Runs section:

® Usage of ${fullname:Tests[n].Assigneeldy}, this allows us to fetch the full name of the assignee instead of the key associated to it.

Test Run Details

This section will gather all the information related to each Test Run of each Test in the Test Execution with all the possible details.

It is composed with several sub-sections that will be filled with information if it is available or be filled with a message showing that no information is

available.

Test Executions Summary

This section have a table with information regarding each Test Run in this Test Execution (and will repeat these sections for each Test Run). The
information is presented as a table with the following fields:

Field
Execution status
Assignee
Executed By
Started On
Finished On
Versions

Revision

Description

Execution Status of the Test Run

Full Name of the Assignee of the Test Run

Full Name of the entity that has executed this Test Run

Timestamp of the Started Date from the TestRun

Timestamp of the Finished Date from the TestRun

Fix Version field associated with the TestRun

Revision assigned to the TestRun

Sample Code

${TestRuns[n].Execution Status}

${fullname:TestRuns[n].Assignee}

${fullname:TestRuns[n].Executed By}

${dateformat('dd-MM-yyyy HH:mm:ss'"): TestRuns[n].Started On}

${dateformat('dd-MM-yyyy HH:mm:ss'):TestRuns[n].Finished On}

${FixVersions}

${Revision}

All of these fields have code to handle empty fields. The resulting table look like the one below.

2. Test Run Details
2.1. Bookstore / Test Execution: BOOK-31 / Test: BOOK-28 - Test a visitor can filter the search result

[Executed By

[Started On

| Finished On

[Versions | Revision

Execution Status [Assignee
| xadmin | xadmin

| 25-02-2019 14:07:47 | 25-02-2019 14:07:47

[1.0 | 65d64uygrter

Execution Defects

If any Defects was found and associated globally with a Test Run it will appear here in the form of a table with the following fields:

Key Description Sample Code
Key Jira Key of the Defect in the form of = @{title=${TestRuns[n].ExecutionDefects[d].Key}|href=${BaseURL}/browse/${TestRuns[n].
a link ExecutionDefects[d].Key}}

Summa = Summary of the Defect

ry

${wiki:TestRuns[n].ExecutionDefects[d]. Summary}

Priority | Priority associated with the defect ${TestRuns[n].ExecutionDefects[d].Priority}

The table will be similar to the one below.

2.15.1. Execution Defects

Key

Summary

BOOK-510

Iteration global defect added

Execution Evidences

If any Evidence was attached to the TestRun we are showing it in table with the FileName.

To obtain that information we have used the following code:

Key Description

Sample Code

File The File Name of the Evidence attached to the = @({title=${TestRuns[n].ExecutionEvidences[d].Name}|href=${TestRuns|[n].
Name Test Run

Author Author of the Evidence

ExecutionEvidences|d].FileURL}}

${TestRuns[n].ExecutionEvidences[d].Author}

File File Size of the Evidence in bytes ${TestRuns[n].ExecutionEvidences[d].Size}
Size
Evidence The Evidence attached to the Execution Y${TestRuns[n].ExecutionEvidences[d].Evidence|maxwidth=100}}

The table in case of an Evidence is of the type image will have the following aspect:

2.16.2. Execution Evidences

File Name Author | File Size Evidence
Untitled.svg | xadmin | 4 kB Qover
Comment

The comment associated to the TestRun (${wiki:TestRuns[n].Comment}).

Test Description

The description of the TestRun (${wiki:TestRuns[n].Description}).

Test Issue Attachments

This section only appears if you have any attachments associated to the Test Run.

Key

File Name = File Name of the Attachment

Author

File Size

Description

The Author of the attachment

Sample Code
@({title=${TestRuns[n].Attachments[a]. Name}|href=${TestRuns[n].Attachments[a].FileURL}}

${fullname:TestRuns[n].Attachments[a].Author}

File Size of the attachments in bytes. = ${TestRuns[n].Attachments[a].Size}

This appears in the document in a table form:

2.10.5. Test Issue Attachments

File Name Author File Size
template.txt xadmin 749

Preconditions

This section only appear if you have a Precondition associated with the TestRun.

Key Description Sample Code

Key Key of the Precondition @{title=${TestRuns[n].PreConditions[c].Key} href=${BaseURL}/browse/${TestRuns[n].
PreConditions[c].Key}}

Summary = Summary field present in the ${wiki:TestRuns[n].PreConditions[a]. Summary}
Precondition

Conditions Condition present in the Precondition | ${wiki:TestRuns[n].PreConditions[a].Conditions}

A sub section will appear with the preconditions definitions.

2.16.6. Preconditions

+
Key BOOK-334
Summary dummy precondition
Condition do this

Parameters

This section lists the existing parameters of the TestRun (we are iterating through the Parameters of the TestRun with: #{for m=TestRuns[n].
ParametersCount}).

Key Description Sample Code

Name = Key of the parameter ${TestRuns[n].Parameters[m].Key}

Value @ Value of the parameter = ${TestRuns[n].Parameters[m].Value}

It will list the Key and the Value of each parameter in a table.

2.16.7. Parameters

There are 2 parameters on this Test Run.

Key Value

password somepass

username somelogin
Iterations

This section uses a sentence to show how many interactions we will go into more details in the next sections.

Key Description Sample Code

Iterations | The iterations count of the Test Run = ${TestRuns[n].lterationsCount}

A sentence is added to the document with this information.

2.16.7. Iterations
This Test Run has 4 iterations|

Iteration Overall Execution Status

To obtain the overall execution status of the iteration we use two variables:

Key Description Sample Code
List of Statuses = Show the List of Statuses ${TestRuns[n].Iterations Overall Execution Status}
TO DO Overall Execution Status per Status = ${TestRuns|[n].Iterations Overall Execution Status.TODO}
EXECUTING ${TestRuns[n].Iterations Overall Execution Status.EXECUTING}
PASS ${TestRuns[n].Iterations Overall Execution Status.PASS}

FAIL ${TestRuns[n].Iterations Overall Execution Status.FAIL}
ABORTED ${TestRuns[n].Iterations Overall Execution Status.ABORTED}

The above code will produce the below table.

2.16.7.1. Iteration Overall Execution Status

List Of Statuses: PASS: 25.0%, FAIL: 0.0%, ABORTED: 0.0%, PENDING: 0.0%, EXECUTING: 25.0%, BLOCKED: 0.0%, TODO: 50.0%

Status Percentage
TODO

EXECUTING

PASS 25.0%

FAIL 0.0%
ABORTED | 0.0%

Test Run details

In this section we are showing the Test Run details with the Name, Status and Parameters.

We extract that information using the following fields:

Key Description Sample Code
Iteration Name Name of the iteration ${TestRuns[n].Iterations[m].Name}
Status Status of the iteration ${TestRuns[n].Iterations[m].Status}
Total Parameters = Total number of parameters ${TestRuns[n].Iterations[m].ParametersCount}
Parameters Lists all parameters in the form of Key=Value | ${TestRuns[n].Iterations[m].Parameters}

This section will have the below appearance:

2.16.7.2. Test Run Iteration 1 details

Status PASS
Total Parameters 2

Parameters username = somelogin,password = somepass

Iteration precondition definition

If a precondition is present we will use the following fields to extract that information:

Key Description Sample Code

Key Iteration precondition key ${TestRuns[n].Iterations[m].PreConditions[l].Key}

Definition | Iteration precondition definition = ${wiki:TestRuns[n].Iterations[m].PreConditions[l].Conditions}

This will produce an entry like the one below:

2.16.7.2.1. Iteration Precondition BOOK-334 Definition

do this

Iteration parameters details

For that given Iteration we are listing the parameters used, that information is extracted with the following fields:

Key Description Sample Code

Name @ Parameter Key ${TestRuns[n].Iterations[m].Parameters[l].Key}

Value @ Parameter Value = ${TestRuns|[n].Iterations[m].Parameters[l].Value}

It generates a table of the following form:

2.16.7.2.2. Iteration 1 Parameters details

Key Value

password somepass
username somelogin

Iteration Test Step Details

In this section we are listing the details of an iteration, we are listing each step present with details, the code we use for that purpose is present in the
below table.

Key Description Sample Code

Step
Action
Data
Expec
ted

Result

Attac
hments

Com
ment

Defec
ts

Evide
nce

Status

The Step Number
Action defined in the Test Step
Data defined in the Test Step

Expected Result defined in the Test Step

Attachments present in each Test Step
(showing the FileURL and a screenshot in
case of the Attachment being an image)

Comment
Defects associated to this Iteration
FileURL and screenshot (if it is an image)

of the Evidence

Test Step Status

${TestRuns[n].Iterations[m]. TestSteps[r].StepNumber}
${wiki:TestRuns[n].Iterations[m]. TestSteps[r].Action}
${wiki:TestRuns|[n].Iterations[m].TestSteps[r]. Data}

${wiki:TestRuns[n].Iterations[m].TestSteps[r].ExpectedResult}

@{title=${TestRuns[n].lterations[m].TestSteps[r]. Attachments[sa].Name}|href=${TestRuns[n].
Iterations[m].TestSteps[r]. Attachments[sa].FileURL}}

{${TestRuns[n].Iterations[m]. TestSteps[r]. Attachments[sa]. Attachment|maxwidth=100}}
${wiki:TestRuns[n].Iterations[m].TestSteps[r]. Comment}
@({title=${TestRuns[n].lterations[m].TestSteps[r].Defects[dc].Key} href=${BaseURL}/browse
/${TestRuns|n].Iterations[m].TestSteps[r]. Defects[dc].Key}}
@({title=${TestRuns[n].lterations[m].TestSteps[r].Evidences[e].Name}|href=${TestRuns[n].
Iterations[m)].TestSteps[r].Evidences[e].FileURL}} by ${TestRuns[n].lterations[m].TestStepsr].
Evidences[e].Author} - ${TestRuns[n].lterations[m].TestSteps|r].Evidences|e].Size}

1${TestRuns[n].Iterations[m]. TestSteps[r]. Evidences[e].Evidence|maxwidth=100}

${TestRuns|[n].lterations[m].TestSteps][r]. Status}

The above information is gathered in a table like the one below:

216.7.33.

This

Iteration 2 Test Steps Details

lanual Test has 5 Steps.

Action

Data Expected Result Comment

Defects | Evidences Status]

Gpen the Change
Password screen by
selecting option "My
Profile > Password"

with data

5 | Fill the password fields

Current
Password:
password
New Error.

Password: | "Current password is
pdssword incorrect”

Confirm New
Password:
pdssword

Close error message
and fill again the
password fields with

Current
Password:
PasswOrd
New Error.

Password: | "New password is too
password | simple"

Confirm New
Password:
password

Test Details

This section shows the Test details, for that we are considering the different possible Tests we can have in Xray: Generic, Manual and Cucumber. For
each type we will fetch different information.

It may seem similar with the Iteration Test Step Details section but in this section we will show the Test details (not instantiated in each Iteration like the
previous section).

Type

Generic

Cucum
ber

Key Description Sample Output
Code
Test Test Type field = ${TestRun 226. Test Details
Type _Sl_[n]";r}eSt Test Type Generic
P Specification [chromium] » login.spec.ts:14:5 > Login validations » Login with invalid credentials.Login validations Login with invalid
Specifi | Definition of ${TestRun credentials
cation | the Generic s[n].
test Generic
Test
Definition}
Test Test Type field = ${TestRun
Type s[n].Test

Type}

Manual

Gherki = Gherkin

n specification
Specifi | of the Test
cation

Step Step Number

Action | Action of the
Test Step

Data Data of the
Test Step

Expect = Expected
ed Result of the
Result | Test Step

Attach = Attachment of
ments | the Test Step

Comm = Comment of
ent the Test Step

Defects Defects
associated
with the Test
Step

Eviden ' Evidence with
ce the Test Step

${TestRun
s[n].
Cucumber
Scenario}

${TestRun
s[a].
TestSteps
[r].
StepNumb
er}

${TestRun
s[al.
TestSteps
[r].Action}

${TestRun
s[al.
TestSteps
[r].Data}

${TestRun
s[al.
TestSteps
[r].
ExpectedR
esult}

${TestRun
s[a].
TestSteps
[r].
Attachment
s[sal.
FileURL}

{${TestRun
s[n].
TestSteps
[r].
Attachment
s[sa].
Attachment

}
|width=100}

${wiki:
TestRuns
[a].
TestSteps
[r].
Comment}

${TestRun
s[a].
TestSteps
[r].Defects
[dc].Key}

${TestRun
s[a].
TestSteps
[r].
Evidences
[e].
FileURL}}

1${TestRun
s[a].
TestSteps
[r].
Evidences
[e].
Evidence|
maxwidth=
100}

2.1.6. Test Details

Test Type

Gherkin Specification

2.15.7. Test Details
This Manual Test has 3 Steps

Cucumber

Given | want to see the gherkin scenarios

Then | will see something in the report

When | will push the export button

Action

Data

Expected Result

Attachments

Comment

Defects

Evidence

Status

Open the App, choose
1 option My Profile >
Logout.

On the login screen,
2 select option | lost my
password.

On the email field,
provide the address data
and press Reset my

Password.

Email:
user@test.com

Information message:
"Check your mailbox for
further instructions”

Status | Status of the ${TestRun
Test Step s[a].

TestSteps

[r].Status}

Requirements linked with this test

For each Test we are listing the Requirements linked

Key Description Sample Code
Requirement Key Key of the Requirement @({title=${TestRuns[n].Requirements[x].Key}|href=${BaseURL}/browse/${TestRuns[n].
Requirements[x].Key}}
Requirement Summary of the ${wiki: TestRuns[n].Requirements[x].Summary}
Summary Requirement

This section present a table with that information like the one below:

2.15.8. Requirements linked with this test

Requirement Key Requirement Summary
BOOK-39 As a user, | want to reset my password so | can regain access when | forget it
BOOK-40 Account Security

Appendix A: Approval

This section is added for the cases where you need to have a signature validating the document.

3. Appendix A: Approval
The undersigned acknowledge they have reviewed the Test Execution and agree with the approach it presents. Changes to this Test Execution will be

coordinated with and approved by the o their designated rep

Signature: Date:
Print Name:

Title:

Role:

Customizing the report

Sections that can be hidden or shown

The report has some variables/flags that can be used to show or hide some sections whose logic is already implemented in the template.
These variables are defined at the top of each sheet, at the report template; the variables are scoped just to the current sheet.

On the template, use one of these values for flag type of variables:

® 0:to hide a section
® 1:to show a section

The format for other types of variables is detailed ahead.

@ Example of setting a variable to, in this case, render information on the section "Test Executions"

${set(showTestRunDetails, 1)}

Variable/flag Purpose default example(s)

showTestRunDetails render the details section 0 ${set(showTestRunDetails, 0)}

® format: O orl

showTestRunEvidences render this section 0 ${set(showTestRunEvidences, 0)}
® format: Oor 1
(Make sure to define showTestRunDetails at 1)
showTestRunAttachments | render this section 0 ${set(showTestRunAttachments, 0)}
® format: O or 1
(Make sure to define showTestRunDetails at 1)
showTestRunlterations render this section 0 ${set(showTestRunlterations, 0)}
® format: Oor 1

(Make sure to define showTestRunDetails at 1)

Adding or removing information to/from the report

As this report is a document with different sections, if some sections are not relevant to you, you should be able to simply delete them. Make sure that no
temporary variables are created in that section that are used in other subsequent sections or if any all conditional blocks are properly closed.

To add additional information, usually we're thinking of adding:
® fields of the Test Execution itself
® fields of the Tests associated with the Test Execution
® fields of the Test Runs associated with the Test Execution

Eventually, also:

® fields of the Test Plan (if associated to any)
® fields of the covered issue(s) associated with the Test that is associated with the Test Execution

The later may be harder to implement, so we won't consider them here.

Exercise: add a field from the related Test issue
Let's say we have a "Severity" field on the Defect that is connected to the Test Execution, and that we want to show it on the report.
We can copy the column "Comment" from the "Tests Details" section and adapt it.
1. insert new column in the table
2. on the "Tests Details" section,
a. copy "Comment" (i.e., insert a column next to it and copy the values from the existing "Comment" column)

b. change
i. ${wiki:TestRuns[n].TestSteps[r].Comment} to ${TestRuns[n].TestSteps[r].Severity}

Performance

Performance can be impacted by the information that is rendered and by how that information is collected/processed.

The number of Test Runs and Tests depending on scenarios, can be considerably high, especially with CI/CD. As this report sum-up quite information,
please use it wisely.

Data-driven tests may also add an overhead, as iterations need to be individually processed, for collecting all the reported/linked defects for example.

@ Some tips

® Use the variables/flags to adjust sections or the Test Plan that will be processed/shown in the report; more info in "Customizing the
report"
® limit the number of input issues; in Xporter there's a global setting for this purpose

Known limitations

® Test Execution comments are not formatted
® Gherkin Scenario Outlines are not considered as data-driven (i.e., only one Test Run will appear)

	Xporter Template: Test Execution Report

