
Document Generator Template: Test Plan Report
Purpose
Output Example(s)
How to use

Source data
Output format
Report assumptions
Usage examples

Export all details obtained in the context of a given Test Plan
Understanding the report

Layout
"Introduction" section

Document Overview
Test Plan Details
Requirements covered by the Tests in this Test Plan
Overall Execution Status
Defects
Tests Summary

Test Executions
Test Executions Summary

Execution Defects
Execution Evidences
Comment
Test Description
Test Issue Attachments
Preconditions
Parameters
Iterations

Iteration Overall Execution Status
Test Run details
Iteration precondition definition
Iteration parameters details
Iteration Test Step Details
Test Details
Requirements linked with this test

Appendix A: Approval
Customizing the report

Sections that can be hidden or shown
Adding or removing information to/from the report

Exercise: add a field from the related Test issue
Performance
Known limitations

Purpose
This report enables you to extract details of a Test Plan, such as the Tests that are part of it, Defects, Requirements and Test Executions, so that you can
generate a document report focusing in what matter the most for your team, or even share it with someone else that hasn't access to Jira.

Possible usage scenarios:

see all the requirements covered by the Test Plan
see all the defects linked to this Test Plan
see an overall status summary of the Test Plan
see a summary of the Tests that are part of the Test Plan
check a specific detail of a Test Execution (like evidences, attachments, assignee, etc)

Output Example(s)
The following screenshots shows an example of the sections you should expect in this report.

1.
a.

1.

How to use

This report can be generated from the Issue details screen.

Source data

This report is applicable to:

1 Test Plan issue

Output format

The standard output format is .DOCX, so you can open it in Microsoft Word, Google Docs, and other tools compatible with this format.

Report assumptions

The template has a set of assumptions that you make sure that your Jira/Xray environment complies with:

Issue types having these names
"Test", "Test Plan", "Test Execution"

If any of these assumptions is not met, you need to update the template accordingly.

Usage examples

Export all details obtained in the context of a given Test Plan

open the Test Plan issue and export it using this template

Understanding the report
The report shows detailed information about the Test Plan provided.

Layout

Learn more

General information about all the existing places available to export from, and how to perform it, is available in the page.Exporting

https://confluence.getxray.app/display/XPORTERCLOUD/Exporting

1.
2.
3.
4.
5.
6.

The report is composed by several sections. Two major sections are available: Introduction and Test Executions details.

By default, and to avoid overload/redundancy of information, only the "Introduction" section will be rendered; you can change this behavior on the template
(more info ahead).

"Introduction" section

This section is divided into 6 sub-sections to have an overview about the Test Plan we have just exported:

Document Overview
Test Plan Details
Requirements covered by the Tests in this Test Plan
Overall Execution Status
Defects
Tests Summary

Each of these sections is explained below.

Document Overview

Brief description of what you will find in this report and how it was generated.

Test Plan Details

In this section we are extracting the Test Plan key in the header and show the Begin and End Date (formatted as demonstrated below), the and Summary
the present in the Test Plan.Description

Field Description Sample Code

Begin
Date

Timestamp of the Begin Date field present in the Test Plan (with proper format) ${dateformat("dd-MM-yyyy HH:mm:ss"):
Begin Date}

End
Date

Timestamp of the End Date field present in the Test Plan (with proper format) ${dateformat("dd-MM-yyyy HH:mm:ss"):
End Date}

Summa
ry

Summary of the Test Plan ${Summary}

Descript
ion

Description of the Test Plan (as this field accepts wiki markup we will use "wiki:" in the code to be
interpreted by the document)

${wiki:Description}

The output will have the following information, notice that as the field support wiki markup we are using " " keyword so that it is correctly Description wiki:
interpreted.

Requirements covered by the Tests in this Test Plan

In this section we have an overview of all the requirements that are covered by Tests in this Test Plan, we extract the , and the Key Summary, Workflow Tes
 Status removing all the repeated entries.t Status

In the Server version we have a query that fetches the Requirements linked with a Test: .testRequirements('${Tests[n].Key}')

Field Description Sample Code

Key Key of the requirement (in this case we are adding it as
link)

@{title=${JQLIssues[a].Key}|href=${BaseURL}/browse/${JQLIssues[a].
Key}}

Summary Summary of the requirement ${JQLIssues[a].Summary}

Workflow
Status

Workflow Status of the requirement ${JQLIssues[a].Status}

Coverage
Status

Requirement coverage status ${JQLIssues[a].Requirement Status}

The requirements are listed in a table with the informations explained above.

Overall Execution Status

As the name suggests we have an overview about the executions of the Tests in this Test Plan, here you will have information about how many Tests you
have in this Test Plan and what are the statuses of their executions.

To obtain this information we are using:

Field Description Sample Code

TestsCo
unt

The total number of Tests in this Test Plan ${TestsCount}

#Tests To extract the count of the overall execution status per each (<status> TO DO, EXECUTING,
)PASS, FAIL, ABORTED

${Overall Execution Status.<status>.
Count}

Percent
age

To extract the percentage of the overall execution status per each (<status> TO DO, EXECUTING,
)PASS, FAIL, ABORTED

${Overall Execution Status.<status>.
Percentage}

This will produce the following output:

Defects

In this section we are listing all the defects found that are associated with this Test Plan, we consider defects associated with TestRuns, defects in Test
Steps or defects found during the iterations. We do not print duplicates.

Field Description Sample Code

Key Key of the
Defect TestRun

@{title=${TestExecutions[n].TestRuns[a].ExecutionDefects[d].Key}|href=${BaseURL}/browse/${TestExecutions[n].
TestRuns[a].ExecutionDefects[d].Key}}

TestSteps
@{title=${TestExecutions[n].TestRuns[a].TestSteps[j].Defects[m].Key}|href=${BaseURL}/browse/${TestExecutions
[n].TestRuns[a].TestSteps[j].Defects[m].Key}}

Iteration TestSteps
@{title=${TestExecutions[n].TestRuns[a].Iterations[it].TestSteps[r].Defects[dc].Key}|href=${BaseURL}/browse
/${TestExecutions[n].TestRuns[a].Iterations[it].TestSteps[r].Defects[dc].Key}}

Summ
ary

Summary of
the Defect TestRun

${TestExecutions[n].TestRuns[a].ExecutionDefects[d].Summary}
TestSteps

${TestExecutions[n].TestRuns[a].TestSteps[j].Defects[m].Summary}
Iteration TestSteps

${TestExecutions[n].TestRuns[a].Iterations[it].TestSteps[r].Defects[dc].Summary}

Priority Priority of the
Defect TestRun

${TestExecutions[n].TestRuns[a].ExecutionDefects[d].Priority}
TestSteps

${TestExecutions[n].TestRuns[a].TestSteps[j].Defects[m].Priority}
Iteration TestSteps

${TestExecutions[n].TestRuns[a].Iterations[it].TestSteps[r].Defects[dc].Priority}

The Defects appear in the document as a table with information regarding the defects found during the executions of the Test Plan.

Tests Summary

In this section we have a table with information regarding the Tests included in this Test Plan. You can find the following information about each Test:

Field Description Sample Code

Key Key of the Test in a link form @{title=${Tests[n].Key}|href=${BaseURL}/browse
/${Tests[n].Key}}

Summary The Summary of the Test ${Tests[n].Summary}

Issue
Assignee

Full name of the assignee ${fullname:Tests[n].Assignee}

Requireme
nts

List of requirements covered by this Test (Check the template to see the extra
cycle we need to list this information)

${JQLIssues[a].Key}

#Test
Executions

Number of Test Executions for each Test (Check the template to see the extra
cycle we need to list this information)

${jqlcount:issue in testTestExecutions('${Tests[n].
Key}') and 'Test Plan' = ${Key}}

Latest
Status

Latest Status of the execution ${Tests[n].LatestStatus}

This information is presented in a table as we can see below:

Some particularities to highlight a different behavior about the code needed to show the Tests Runs section:

Ability to put the Tests with a particular status on top of the table (more info ahead).
Usage of , this allows us to fetch the full name of the assignee instead of the key associated to it.${fullname:Tests[n].Assignee}

Test Executions

This section will gather all the information related to each Test Execution of each Test in the Test Plan with all the possible details.

It is composed with several sub-sections that will be filled with information if it is available or be filled with a message showing that no information is
available.

Test Executions Summary

This section have a table with information regarding each Test Execution in this Test Plan (and will repeat these sections for each Test Execution). The
information is presented as a table with the following fields:

Field Description Sample Code

Execution
status

Execution Status of the Test Run ${TestExecutions[n].TestRuns[a].Execution Status}

Assignee Full Name of the Assignee of the Test Run ${fullname:TestExecutions[n].TestRuns[a].Assignee}

Executed By Full Name of the entity that has executed this Test
Run

${fullname:TestExecutions[n].TestRuns[a].Executed By}

Started On Timestamp of the Started Date from the TestRun ${dateformat('dd-MM-yyyy HH:mm:ss'):TestExecutions[n].TestRuns[a].Started
On}

Finished On Timestamp of the Finished Date from the TestRun ${dateformat('dd-MM-yyyy HH:mm:ss'):TestExecutions[n].TestRuns[a].
Finished On}

Versions Fix Version field associated with the TestRun ${TestExecutions[n].TestRuns[a].FixVersions}

Revision Revision assigned to the TestRun ${TestExecutions[n].TestRuns[a].Revision}

All of these fields have code to handle empty fields. The resulting table look like the one below.

Execution Defects

If any Defects was found and associated globally with a TesRun it will appear here in the form of a table with the following fields:

Key Description Sample Code

Key Jira Key of the Defect in the
form of a link

@{title=${TestExecutions[n].TestRuns[a].ExecutionDefects[d].Key}|href=${BaseURL}/browse/${TestExecutions
[n].TestRuns[a].ExecutionDefects[d].Key}}

Sum
mary

Summary of the Defect ${TestExecutions[n].TestRuns[a].ExecutionDefects[d].Summary}

Priority Priority associated with the
defect

${TestExecutions[n].TestRuns[a].ExecutionDefects[d].Priority}

The table will be similar to the one below.

Execution Evidences

If any Evidence was attached to the TestRun we are showing it in table with the FileName and a screenshot if the Evidence is an image otherwise just a
link.

To obtain that information we have used the following code:

Key Description Sample Code

File
Name

The File Name of the Evidence
attached to the Execution

@{title=${TestExecutions[n].TestRuns[a].ExecutionEvidences[d].Name}|href=${TestExecutions[n].
TestRuns[a].ExecutionEvidences[d].FileURL}}

Author Author of the Evidence ${TestExecutions[n].TestRuns[a].ExecutionEvidences[d].Author}

File
Size

File Size of the Evidence in bytes ${TestExecutions[n].TestRuns[a].ExecutionEvidences[d].Size}

Evide
nce

The Evidence attached to the
Execution

!{${TestExecutions[n].TestRuns[a].ExecutionEvidences[d].Evidence|maxwidth=100}}

The table in case of an Evidence is of the type image will have the following aspect:

Comment

The comment associated to the TestRun ().${wiki:TestExecutions[n].TestRuns[a].Comment}

Test Description

The description of the TestRun ().${wiki:TestExecutions[n].TestRuns[a].Description}

Test Issue Attachments

This section only appears if you have any attachments associated to the Test.

Key Description Sample Code

File
Name

File Name of the Attachment @{title=${TestExecutions[n].TestRuns[a].Attachments[b].Name}|href=${TestExecutions[n].TestRuns[a].
Attachments[b].FileURL}}

Author The Author of the attachment ${TestExecutions[n].TestRuns[a].Attachments[b].Author}

File
Size

File Size of the attachments in
bytes.

${TestExecutions[n].TestRuns[a].Attachments[b].Size}

This appears in the document in a table form:

Preconditions

This section only appear if you have a Precondition associated with the TestRun.

Key Description Sample Code

Key Key of the Precondition @{title=${TestExecutions[n].TestRuns[a].PreConditions[c].Key}|href=${BaseURL}/browse/${TestExecutions
[n].TestRuns[a].PreConditions[c].Key}}

Summ
ary

Summary of the Precondition ${TestExecutions[n].TestRuns[a].PreConditions[c].Summary}

Condit
ion

Condition field present in the
Precondition

${wiki:TestExecutions[n].TestRuns[a].PreConditions[c].Conditions}

A sub section will appear with the preconditions definitions.

Parameters

This section lists the existing parameters of the TestRun (we are iterating through the Parameters of the TestRun with: #{for m=TestExecutions[n].TestRuns
.[a].ParametersCount})

Key Description Sample Code

Name Key of the parameter ${TestExecutions[n].TestRuns[a].Parameters[m].Key}

Value Value of the parameter ${TestExecutions[n].TestRuns[a].Parameters[m].Value}

It will list the Key and the Value of each parameter in a table.

Iterations

This section uses a sentence to show how many interactions we will go into more details in the next sections.

Key Description Sample Code

Iterations The iterations count of the Test Run ${TestExecutions[n].TestRuns[a].IterationsCount}

A sentence is added to the document with this information.

Iteration Overall Execution Status

To obtain the overall execution status of the iteration we use two variables:

Key Description Sample Code

List of Statuses Show the List of Statuses ${TestExecutions[n].TestRuns[a].Iterations Overall Execution Status}

TO DO

EXECUTING

PASS

FAIL

ABORTED

Overall Execution Status per Status ${TestExecutions[n].TestRuns[a].Iterations Overall Execution Status.TO DO}

${TestExecutions[n].TestRuns[a].Iterations Overall Execution Status.EXECUTING}

${TestExecutions[n].TestRuns[a].Iterations Overall Execution Status.PASS}

${TestExecutions[n].TestRuns[a].Iterations Overall Execution Status.FAIL}

${TestExecutions[n].TestRuns[a].Iterations Overall Execution Status.ABORTED}

The above code will produce the below table.

Test Run details

In this section we are showing the Test Run details with the Name, Status and Parameters.

We extract that information using the following fields:

Key Description Sample Code

Iteration Name Name of the iteration ${TestExecutions[n].TestRuns[a].Iterations[m].Name}

Status Status of the iteration ${TestExecutions[n].TestRuns[a].Iterations[m].Status}

Total Parameters Total number of parameters ${TestExecutions[n].TestRuns[a].Iterations[m].ParametersCount}

Parameters Lists all parameters in the form of Key=Value ${TestExecutions[n].TestRuns[a].Iterations[m].Parameters}

This section will have the below appearance:

Iteration precondition definition

If a precondition is present we will use the following fields to extract that information:

Key Description Sample Code

Key Iteration precondition key ${TestExecutions[n].TestRuns[a].Iterations[m].PreConditions[l].Key}

Definition Iteration precondition definition ${wiki:TestExecutions[n].TestRuns[a].Iterations[m].PreConditions[l].PreCondition.Definition}

This will produce an entry like the one below:

Iteration parameters details

For that given Iteration we are listing the parameters used, that information is extracted with the following fields:

Key Description Sample Code

Name Parameter Key ${TestExecutions[n].TestRuns[a].Iterations[m].Parameters[l].Key}

Value Parameter Value ${TestExecutions[n].TestRuns[a].Iterations[m].Parameters[l].Value}

It generates a table of the following form:

Iteration Test Step Details

In this section we are listing the details of an iteration, we are listing each step present with details, the code we use for that purpose i present in the below
table.

Key Description Sample Code

Step The Step Number ${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].StepNumber}

Action Action defined in the Test Step ${wiki:TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Action}

Data Data defined in the Test Step ${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Data}

Expec
ted
Result

Expected Result defined in the Test
Step

${wiki:TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].ExpectedResult}

Attac
hments

Attachments present in each Test
Step (showing the FileURL and a
screenshot in case of the
Attachment being an image)

@{title=${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Attachments[sa].Name}
|href=${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Attachments[sa].FileURL}}

!{${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Attachments[sa].
Attachment|maxwidth=100}}

Com
ment

Comment ${wiki:TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Comment}

Defec
ts

Defects associated to this Iteration @{title=${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Defects[dc].Key}|href=${BaseURL}
/browse/${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Defects[dc].Key}}

Evide
nce

FileURL and screenshot (if it is an
image) of the Evidence

@{title=${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Evidences[e].Name}
|href=${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Evidences[e].FileURL}} by
${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Evidences[e].Author} - ${TestExecutions[n].
TestRuns[a].Iterations[m].TestSteps[r].Evidences[e].Size}

!${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Evidences[e].Evidence|maxwidth=100}

Status Test Step Status ${TestExecutions[n].TestRuns[a].Iterations[m].TestSteps[r].Status}

The above information is gathered in a table like the one below:

Test Details

This section shows the Test details, for that we are considering the different possible Test we can have in Xray: Generic, Manual and Cucumber. For each
type we will fetch different information.

It may seem similar with the Iteration Test Step Details section but in this section we will show the Test details (not instantiated in each Iteration like the
previous section).

Type Key Description Sample Code Output

Generic Test
Type

Test Type field ${TestExecution
s[n].TestRuns[a].
TestType}

Specifi
cation

Definition of
the Generic
test

${TestExecution
s[n].TestRuns[a].
Generic Test
Definition}

Cucum
ber

Test
Type

Test Type field ${TestExecution
s[n].TestRuns[a].
TestType}

Gherki
n
Specifi
cation

Gherkin
specification
of the Test

${TestExecution
s[n].TestRuns[a].
Cucumber
Scenario}

#{for
h=JQLIssuesCo
unt|clause=key
in
testExampleRes
ult
('${TestExecutio
ns[n].TestRuns
[a].Key')}

${TestExecution
s[n].TestRuns[a].
TestStepsResult
s[h]}

#{end}

Manual Step Step Number ${TestExecution
s[n].TestRuns[a].
TestSteps[r].
StepNumber}

Action Action of the
Test Step

${TestExecution
s[n].TestRuns[a].
TestSteps[r].
Action}

Data Data of the
Test Step

${TestExecution
s[n].TestRuns[a].
TestSteps[r].
Data}

Expect
ed
Result

Expected
Result of the
Test Step

${TestExecution
s[n].TestRuns[a].
TestSteps[r].
ExpectedResult}

Attach
ment

Attachment of
the Test Step

${TestExecution
s[n].TestRuns[a].
TestSteps[r].
Attachments[sa].
FileURL}

Comm
ent

Comment of
the Test Step

${wiki:
TestExecutions
[n].TestRuns[a].
TestSteps[r].
Comment}

Defects Defects
associated
with the Test
Step

${TestExecution
s[n].TestRuns[a].
TestSteps[r].
Defects[dc].Key}

Eviden
ce

Evidence with
the Test Step

${TestExecution
s[n].TestRuns[a].
TestSteps[r].
Evidences[e].
FileURL}}

!${TestExecution
s[n].TestRuns[a].
TestSteps[r].
Evidences[e].
Evidence|maxwi
dth=100}

Status Status of the
Test Step

${TestExecution
s[n].TestRuns[a].
TestSteps[r].
Status}

Requirements linked with this test

For each Test we are listing the Requirements linked

Key Description Sample Code

Requirement Key Key of the Requirement ${TestExecutions[n].TestRuns[a].Requirements[x].Key}

Requirement Summary Summary of the Requirement ${wiki:TestExecutions[n].TestRuns[a].Requirements[x].Summary}

Workflow Status Workflow status of the Requirement ${TestExecutions[n].TestRuns[a].Requirements[x].Status}

This section present a table with that information like the one below:

Appendix A: Approval

This section is added for the cases where you need to have a signature validating the document.

Customizing the report

Sections that can be hidden or shown

The report has some variables/flags that can be used to show or hide some sections whose logic is already implemented in the template.

These variables are defined at the top of each sheet, at the report template; the variables are scoped just to the current sheet.

On the template, use one of these values for flag type of variables:

0: to hide a section
1: to show a section

1.
2.

a.
b.

i.

The format for other types of variables is detailed ahead.

Variable/flag Purpose default example(s)

showTestRunDetails render the details section

format: 0 or 1

0 ${set(showTestRunDetails,
0)}

showTestRunEvidences render this section

format: 0 or 1

(Make sure to define showTestRunDetails at 1)

0 ${set
(showTestRunEvidences, 0)}

showTestRunAttachments render this section

format: 0 or 1

(Make sure to define showTestRunDetails at 1)

0 ${set
(showTestRunAttachments,
0)}

showTestRunIterations render this section

format: 0 or 1

(Make sure to define showTestRunDetails at 1)

0 ${set
(showTestRunIterations, 0)}

statusesToShowFirst render Test Summary section whose reported status is one in this list first (delimited by
comma); use an empty string '' to include all statuses

format: '<status1>,<status2>"

''

(i.e., all
statuses)

${set(statusesToInclude,
'FAILED')}

${set(statusesToInclude,
'FAIL,EXECUTING')}

${set(statusesToInclude, '')}

Adding or removing information to/from the report

As this report is a document with different sections, if some sections are not relevant to you, you should be able to simply delete them. Make sure that no
temporary variables are created in that section that are used in other subsequent sections or if any all conditional blocks are properly closed.

To add additional information, usually we're thinking of adding:

fields of the Test Plan itself
fields of the Tests associated with the Test Plan
fields of the Test Executions associated with the Test Plan

Eventually, also:

fields of the Test Runs(s)
fields of the covered issue(s) associated with the Test that is associated with the Test Plan

The later may be harder to implement, so we won't consider them here.

Exercise: add a field from the related Test issue

Let's say we have a "Severity" field on the Test issue that is connected to the Test Plan, and that we want to show it on the report.

We can copy the column "Summary" from the "Tests Summary" section and adapt it.

insert new column in the table
on the "Tests Summary" section,

copy "Summary" (i.e., insert a column next to it and copy the values from the existing "Summary" column)
change

${Tests[n].Summary} to ${Tests[n].Severity}

Performance
Performance can be impacted by the information that is rendered and by how that information is collected/processed.

Example of setting a variable to, in this case, render information on the section "Test Executions"

${set(showTestRunDetails, 1)}

The number of Test Runs and Tests depending on scenarios, can be considerably high, especially with CI/CD. As this report sum-up quite information,
please use it wisely.

Data-driven tests may also add an overhead, as iterations need to be individually processed, for collecting all the reported/linked defects for example.

Known limitations
Test Plan comments are not formatted
Gherkin Scenario Outlines are not considered as data-driven (i.e., only one Test Run will appear)

Some tips

Use the variables/flags to adjust sections or the Test Plan that will be processed/shown in the report; more info in "Customizing the
report"
limit the number of input issues; in Xporter there's a global setting for this purpose

	Document Generator Template: Test Plan Report

