Document Generator Template: Test Plan Report

® Purpose
® Qutput Example(s)
® How to use
© Source data
© Qutput format
© Report assumptions
O Usage examples
= Export all details obtained in the context of a given Test Plan
® Understanding the report
© Layout
® "Introduction” section
® Document Overview
® Test Plan Details
Requirements covered by the Tests in this Test Plan
Overall Execution Status
Defects
® Tests Summary
® Test Executions
® Test Executions Summary
© Execution Defects
Execution Evidences
Comment
Test Description
Test Issue Attachments
Preconditions
Parameters
Iterations

O O 0O O O 0 O

Iteration Overall Execution Status
Test Run details

Iteration precondition definition
Iteration parameters details
Iteration Test Step Details

Test Details

Requirements linked with this test

= Appendix A: Approval
® Customizing the report
© Sections that can be hidden or shown
© Adding or removing information to/from the report
= Exercise: add a field from the related Test issue
® Performance
® Known limitations

Purpose

This report enables you to extract details of a Test Plan, such as the Tests that are part of it, Defects, Requirements and Test Executions, so that you can
generate a document report focusing in what matter the most for your team, or even share it with someone else that hasn't access to Jira.

Possible usage scenarios:

see all the requirements covered by the Test Plan

see all the defects linked to this Test Plan

see an overall status summary of the Test Plan

see a summary of the Tests that are part of the Test Plan

check a specific detail of a Test Execution (like evidences, attachments, assignee, etc)

Output Example(s)

The following screenshots shows an example of the sections you should expect in this report.

1. Introduction

TEST PLAN

Test Plan for v1.0

1.1. Document Overview
This Test Report provides a summary of a test plan. This document has been generated automatically from the test management platform.

1.2. Test Plan BOOK-30 Details

Begin Date
Summary

18-02-2019 14:03:00
Test Plan for v1.0

End Date

Description

1.3. Requirements covered by the Tests in this Test Plan

Project Name: Bookstore
Issue: BOOK-30

Prepared By: Xpand IT Admin

Document Date: 24/11/2022

CONFIDENTIAL

22-02-2019 14:03:00

| Key Summary Workflow Status Test Status
BOOK-5 {As a visitor, | can change my [Resolved [OK]
locale
BOOK-4 {As a visitor, | can edit my Resolved [OK]
laccount details
BOOK-1 {As a visitor, | can manage myOpen [OK]
laccount
BOOK-3 {As a visitor, | can logout from[Resolved [OK]
Imy account
BOOK-2 {As a visitor, | can login to Resolved [OK]
Bookstore Website
BOOK-7 {As a visitor, | can search for [Resolved [NOK]
1.6. Tests Summary
Key Summary Issue Assignee Requirements | #TestExecutions | Latest Status
BOOK-18 Test a visitor can change his locale Bruno Conde BOOK-5 1 | PASS |
BOOK-17 Test a logged in visitor can edit the defaulf Bruno Conde BOOK-4 1
address BOOKA [___PASS |
BOOK-15 Test logged in visitors can logout from Bruno Conde BOOK-3 1 [UPASS |
their account BOOK-1
BOOK-16 Test a logged in visitor can edit the Bruno Conde BOOK-4 1
laccount details BOOK-1 [__PASS |
BOOK-14 Test visitors can login to Bookstore Bruno Conde BOOK-2 1
\Website BOOKA [__PASS |
BOOK-28 Test a visitor can filter the search result Bruno Conde BOOK-7 2 FAIL
BOOK-27 Test a visitor can do a valid search with Bruno Conde BOOK-7 1 [PASS |
multiple keywords
BOOK-26 Test a visitor can do a valid search with a | Bruno Conde BOOK-7 1 [PASS |
single keyword
BOOK-25 Test a visitor can view all the books in his | Bruno Conde BOOK-11 1 [UPASS |
shopping basket BOOK-8
BOOK-24 Test visitors can remove books from their | Bruno Conde BOOK-10 1
shopping basket BOOK-8 L__PASS]

1.5. Defects found

Key Summary Priority
BOOK-32 Error when adding Book to shopping basket Trivial
BOOK-502 global defect Trivial
BOOK-50: another step level defect Trivial
| BOOK-50 step level defect Trivial
BOOK-501 dummy def3 Trivial

3. Test Executions
3.1. BOOK-500: Test Execution for Test Plan BOOK-30
3.1.1. BOOK-498: Manual Test

[Execution Status | Assignee [Executed By [started on [Finished on [versions [Revision |
[Xpand IT Admin | xadmin | B kD - |
3.1.1.1. Execution Defects
Key [summary Priority |
BOOK-502 [global defect [rriviat |
3.1.1.2. Execution Evidence
File Name Author File Size Evidence

pexels-anna-kester-5352939.jpg xadmin 2573650

How to use

This report can be generated from the Issue details screen.

@ Learn more

General information about all the existing places available to export from, and how to perform it, is available in the Exporting page.

Source data

This report is applicable to:

® 1 Test Plan issue

Output format

The standard output format is .DOCX, so you can open it in Microsoft Word, Google Docs, and other tools compatible with this format.

Report assumptions
The template has a set of assumptions that you make sure that your Jira/Xray environment complies with:

1. Issue types having these names
a. "Test", "Test Plan", "Test Execution"

If any of these assumptions is not met, you need to update the template accordingly.

Usage examples
Export all details obtained in the context of a given Test Plan

1. open the Test Plan issue and export it using this template

Understanding the report

The report shows detailed information about the Test Plan provided.

Layout

https://confluence.getxray.app/display/XPORTERCLOUD/Exporting

The report is composed by several sections. Two major sections are available: Introduction and Test Executions details.

By default, and to avoid overload/redundancy of information, only the "Introduction" section will be rendered; you can change this behavior on the template
(more info ahead).

"Introduction" section
This section is divided into 6 sub-sections to have an overview about the Test Plan we have just exported:

. Document Overview

. Test Plan Details

. Requirements covered by the Tests in this Test Plan
. Overall Execution Status

. Defects

. Tests Summary

OO~ WNPE

Each of these sections is explained below.

Document Overview

Brief description of what you will find in this report and how it was generated.

Test Plan Details

In this section we are extracting the Test Plan key in the header and show the Begin and End Date (formatted as demonstrated below), the Summary and
the Description present in the Test Plan.

Field Description Sample Code
Begin Timestamp of the Begin Date field present in the Test Plan (with proper format) ${dateformat("dd-MM-yyyy HH:mm:ss"):
Date Begin Date}
End Timestamp of the End Date field present in the Test Plan (with proper format) ${dateformat("dd-MM-yyyy HH:mm:ss"):
Date End Date}
Summa = Summary of the Test Plan ${Summary}
ry

Descript = Description of the Test Plan (as this field accepts wiki markup we will use "wiki:" in the code to be ${wiki:Description}
ion interpreted by the document)

The output will have the following information, notice that as the Description field support wiki markup we are using "wiki:" keyword so that it is correctly
interpreted.

1.2. Test Plan BOOK-30 Details

Begin Date 18-02-2019 14:03:00 End Date 22-02-2019 14:03:00

Summary Test Plan for v1.0 Description

Requirements covered by the Tests in this Test Plan

In this section we have an overview of all the requirements that are covered by Tests in this Test Plan, we extract the Key, Summary, Workflow and the Tes
t Status Status removing all the repeated entries.

In the Server version we have a query that fetches the Requirements linked with a Test: testRequirements('${Tests[n].Key}').

Field Description Sample Code
Key Key of the requirement (in this case we are adding it as @({title=${JQLIssues[a].Key} href=${BaseURL}/browse/${IQLIssues[a].
link) Key}}
Summary Summary of the requirement ${JQLIssues[a].Summary}
Workflow Workflow Status of the requirement ${JIQLIssues[a].Status}
Status
Coverage Requirement coverage status ${JQLIssues[a].Requirement Status}

Status

The requirements are listed in a table with the informations explained above.

1.3. Requirements covered by the Tests in this Test Plan

Key Summary Workflow Status Test Status

BOOK-5 /As a visitor, | can change my [Resolved [OK]
locale

BOOK-4 IAs a visitor, | can edit my Resolved [OK]
account details

BOOK-1)As a visitor, | can manage my|Open [OK]
account

BOOK-3 /As a visitor, | can logout from[Resolved [OK]
my account

BOOK-2 iAs a visitor, | can login to Resolved [OK]
Bookstore Website

BOOK-7 IAs a visitor, | can search for [Resolved [NOK]

Overall Execution Status

As the name suggests we have an overview about the executions of the Tests in this Test Plan, here you will have information about how many Tests you
have in this Test Plan and what are the statuses of their executions.

To obtain this information we are using:

Field Description Sample Code
TestsCo = The total number of Tests in this Test Plan ${TestsCount}
unt
#Tests To extract the count of the overall execution status per each <status> (TO DO, EXECUTING, ${Overall Execution Status.<status>.
PASS, FAIL, ABORTED) Count}

Percent | To extract the percentage of the overall execution status per each <status> (TO DO, EXECUTING, @ ${Overall Execution Status.<status>.
age PASS, FAIL, ABORTED) Percentage}

This will produce the following output:

1.4. Overall Execution Status
Of the 22 Tests contained on BOOK-30:

Status #Tests Percentage
TODO

EXECUTING

PASS 13 59.1 %
FAIL 4 18.2 %
ABORTED 0 0.0 %

Defects

In this section we are listing all the defects found that are associated with this Test Plan, we consider defects associated with TestRuns, defects in Test
Steps or defects found during the iterations. We do not print duplicates.

Field Description Sample Code

Key Key of the
Defect ® TestRun
o @{title=${TestExecutions[n]. TestRuns[a].ExecutionDefects[d].Key} href=${BaseURL}/browse/${TestExecutions[n].

TestRuns[a].ExecutionDefects[d].Key}}

® TestSteps

o @({title=${TestExecutions[n]. TestRuns[a]. TestSteps]j].Defects[m].Key} href=${BaseURL}/browse/${TestExecutions

[n]. TestRuns[a]. TestSteps][j]. Defects[m].Key}}

® |[teration TestSteps

o @(title=${TestExecutions[n]. TestRuns[a].lterations[it]. TestSteps[r]. Defects[dc].Key}|href=${BaseURL}/browse
/${TestExecutions[n]. TestRuns[a].Iterations[it]. TestSteps[r]. Defects[dc].Key}}

Summ | Summary of

ary the

Defect ® TestRun

O ${TestExecutions[n].TestRuns[a].ExecutionDefects[d]. Summary}

® TestSteps

0 ${TestExecutions[n]. TestRuns[a]. TestSteps[j].Defects[m].Summary}

® [teration TestSteps

o ${TestExecutions[n].TestRuns|a].lterations[it]. TestSteps|[r].Defects[dc]. Summary}

Priority = Priority of the
Defect ® TestRun
o ${TestExecutions[n].TestRuns[a].ExecutionDefects[d].Priority}

® TestSteps

© ${TestExecutions[n].TestRuns[a]. TestSteps][j]. Defects[m].Priority}

® |[teration TestSteps

o ${TestExecutions[n]. TestRuns[a].Iterationsit]. TestSteps[r].Defects[dc].Priority}

The Defects appear in the document as a table with information regarding the defects found during the executions of the Test Plan.

1.5. Defects
Key Summary Priority
BOOK-32 Error when adding Book to shopping basket Trivial
BOOK-502 global defect Trivial
BOOK-503 another step level defect Trivial
BOOK-501 step level defect Trivial
BOOK-506 dummy def3 Trivial

Tests Summary

In this section we have a table with information regarding the Tests included in this Test Plan. You can find the following information about each Test:

Field

Key

Summary

Issue
Assignee

Requireme
nts

#Test
Executions

Latest
Status

Description

Key of the Test in a link form

The Summary of the Test

Full name of the assignee

List of requirements covered by this Test (Check the template to see the extra

cycle we need to list this information)

Number of Test Executions for each Test (Check the template to see the extra

cycle we need to list this information)

Latest Status of the execution

Sample Code

@({title=${Tests[n].Key}|href=${BaseURL}/browse
/${Tests[n].Key}}

${Tests[n].Summary}

${fullname:Tests[n].Assignee}
${JQLIssues[a].Key}
${jglcount:issue in testTestExecutions('${Tests[n].

Key}) and 'Test Plan' = ${Key}}

${Tests[n].LatestStatus}

This information is presented in a table as we can see below:

1.6. Tests Summary
-+

Key [Summary Issue Assignee Requirements | #TestExecutions | Latest Status

BOOK-18 Test a visitor can change his locale Bruno Conde BOOK-5 1

BOOK-17 Test a logged in visitor can edit the defaul Bruno Conde BOOK-4 1 PASS
Mol oo [PASS |

BOOK-15 Test logged in visitors can logout from Bruno Conde BOOK-3 1
their account BOOK-1

BOOK-16 Test a logged in visitor can edit the Bruno Conde BOOK-4 1 PASS
account details BOOK-1 [___PASS |

BOOK-14 Test visitors can login to Bookstore Bruno Conde BOOK-2 1
Website BOOK-1

BOOK-28 Test a visitor can filter the search result Bruno Conde BOOK-7 2

BOOK-27 Test a visitor can do a valid search with Bruno Conde BOOK-7 1
multiple keywords

BOOK-26 Test a visitor can do a valid search with a | Bruno Conde BOOK-7 1
single keyword

BOOK-25 Test a visitor can view all the books in his [Bruno Conde BOOK-11 1

:

shopping basket BOOK-8

BOOK-24 Test visitors can remove books from their [Bruno Conde BOOK-10 1 PASS
shopping basket BOOK-8 [__PASS |

Some particularities to highlight a different behavior about the code needed to show the Tests Runs section:

® Ability to put the Tests with a particular status on top of the table (more info ahead).
® Usage of ${fullname:Tests[n].Assignee}, this allows us to fetch the full name of the assignee instead of the key associated to it.

Test Executions
This section will gather all the information related to each Test Execution of each Test in the Test Plan with all the possible details.

It is composed with several sub-sections that will be filled with information if it is available or be filled with a message showing that no information is
available.

Test Executions Summary

This section have a table with information regarding each Test Execution in this Test Plan (and will repeat these sections for each Test Execution). The
information is presented as a table with the following fields:

Field Description Sample Code

Execution Execution Status of the Test Run ${TestExecutions[n]. TestRuns[a].Execution Status}

status

Assignee Full Name of the Assignee of the Test Run ${fullname:TestExecutions[n]. TestRuns[a].Assignee}

Executed By Full Name of the entity that has executed this Test ${fullname: TestExecutions[n]. TestRuns[a].Executed By}

Run

Started On Timestamp of the Started Date from the TestRun ${dateformat('dd-MM-yyyy HH:mm:ss"): TestExecutions[n]. TestRuns[a].Started
On}

Finished On Timestamp of the Finished Date from the TestRun ${dateformat(‘dd-MM-yyyy HH:mm:ss"): TestExecutions[n].TestRuns[a].
Finished On}

Versions Fix Version field associated with the TestRun ${TestExecutions[n]. TestRuns[a].FixVersions}

Revision Revision assigned to the TestRun ${TestExecutions[n].TestRuns[a].Revision}

All of these fields have code to handle empty fields. The resulting table look like the one below.

2.1.1. BOOK-28: Test a visitor can filter the search result

Execution Status | Assignee Executed By Started On Finished On Versions Revision

- | Xpand IT Admin xadmin 1.0

Execution Defects

If any Defects was found and associated globally with a TesRun it will appear here in the form of a table with the following fields:

Key Description

Key Jira Key of the Defect in the

form of a link

Sum Summary of the Defect
mary

Priority = Priority associated with the
defect

Sample Code

[n]. TestRuns[a].ExecutionDefects[d].Key}}

${TestExecutions[n]. TestRuns[a].ExecutionDefects[d]. Summary}

${TestExecutions[n]. TestRuns[a].ExecutionDefects[d].Priority}

The table will be similar to the one below.

+2.1.6.1. Execution Defects

@({title=${TestExecutions[n]. TestRuns[a].ExecutionDefects[d]. Key}|href=${BaseURL}/browse/${TestExecutions

Key

Summary

‘Priority

BOOK-32

Error when adding Book to shopping basket

[Trivial

Execution Evidences

If any Evidence was attached to the TestRun we are showing it in table with the FileName and a screenshot if the Evidence is an image otherwise just a

link.

To obtain that information we have used the following code:

Key Description

File The File Name of the Evidence

Name | attached to the Execution

Author | Author of the Evidence

File File Size of the Evidence in bytes

Size

Evide | The Evidence attached to the

nce Execution

Sample Code

${TestExecutions[n]. TestRuns[a].ExecutionEvidences[d].Author}

The table in case of an Evidence is of the type image will have the following aspect:

2.1.6.2. Execution Evidence

${TestExecutions[n]. TestRuns[a].ExecutionEvidences[d].Size}

@({title=${TestExecutions[n]. TestRuns[a].ExecutionEvidences[d].Name}|href=${TestExecutions[n].
TestRuns[a].ExecutionEvidences[d].FileURL}}

Y${TestExecutions[n]. TestRuns[a].ExecutionEvidences[d].Evidence|maxwidth=100}}

File Name

Author

File Size

Evidence

funny-error-messages.jpg

xadmin

411864

Comment

The comment associated to the TestRun (${wiki:TestExecutions[n]. TestRuns[a]. Comment}).

Test Description

The description of the TestRun (${wiki:TestExecutions[n].TestRuns[a].Description}).

Test Issue Attachments

This section only appears if you have any attachments associated to the Test.

Key Description

Sample Code

File File Name of the Attachment @({title=${TestExecutions[n]. TestRuns[a].Attachments[b]. Name}| href=${TestExecutions[n]. TestRunsl[a].
Name Attachments[b].FileURL}}

Author The Author of the attachment ${TestExecutions[n]. TestRuns[a].Attachments[b].Author}

File File Size of the attachments in = ${TestExecutions[n].TestRuns[a].Attachments[b].Size}
Size bytes.

This appears in the document in a table form:

2.1.10.5. Test Issue Attachments

File Name Author File Size
template.txt xadmin 749

Preconditions

This section only appear if you have a Precondition associated with the TestRun.

Key Description Sample Code

Key Key of the Precondition @({title=${TestExecutions[n]. TestRuns[a].PreConditions[c].Key}|href=${BaseURL}/browse/${TestExecutions
[n]. TestRuns[a].PreConditions[c].Key}}

Summ | Summary of the Precondition ${TestExecutions[n].TestRuns[a].PreConditions[c]. Summary}
ary

Condit | Condition field present in the ${wiki:TestExecutions[n].TestRuns[a].PreConditions[c].Conditions}
ion Precondition

A sub section will appear with the preconditions definitions.

2.1.16.6. Preconditions

Key BOOK-334
Summary dummy precondition
Condition do this

Parameters

This section lists the existing parameters of the TestRun (we are iterating through the Parameters of the TestRun with: #{for m=TestExecutions[n]. TestRuns
[a].ParametersCount}).

Key Description Sample Code

Name = Key of the parameter ${TestExecutions[n]. TestRuns[a].Parameters[m].Key}

Value | Value of the parameter = ${TestExecutions[n].TestRuns[a].Parameters[m].Value}

It will list the Key and the Value of each parameter in a table.

2.1.16.7. Parameters
There are 2 parameters on this Test Run.

Key Value

password somepass

username somelogin
Iterations

This section uses a sentence to show how many interactions we will go into more details in the next sections.
Key Description Sample Code

Iterations | The iterations count of the Test Run = ${TestExecutions[n].TestRuns[a].lterationsCount}

A sentence is added to the document with this information.

2.3.1.7. lterations
This Test Run has 4 iterations.

Iteration Overall Execution Status

To obtain the overall execution status of the iteration we use two variables:

Key Description Sample Code
List of Statuses = Show the List of Statuses ${TestExecutions[n]. TestRuns[a].Iterations Overall Execution Status}
TO DO Overall Execution Status per Status = ${TestExecutions[n].TestRuns[a].lterations Overall Execution Status.TO DO}
EXECUTING ${TestExecutions[n].TestRuns[a].lterations Overall Execution Status.EXECUTING}
PASS ${TestExecutions[n]. TestRuns[a].lterations Overall Execution Status.PASS}

FAIL ${TestExecutions[n]. TestRuns[a].lterations Overall Execution Status.FAIL}
ABORTED ${TestExecutions[n].TestRuns[a].lterations Overall Execution Status.ABORTED}

The above code will produce the below table.
2.3.1.7.1. Iteration Overall Execution Status
List Of Statuses: PASS: 25.0%, FAIL: 25.0%, ABORTED: 0.0%, PENDING: 0.0%, EXECUTING: 25.0%, BLOCKED: 0.0%, TODO: 25.0%

TODO

EXECUTING

PASS 25.0%
FAIL 25.0%
ABORTED 0.0%

Test Run details

In this section we are showing the Test Run details with the Name, Status and Parameters.

We extract that information using the following fields:

Key Description Sample Code
Iteration Name Name of the iteration ${TestExecutions[n]. TestRuns[a].lterations[m].Name}
Status Status of the iteration ${TestExecutions[n]. TestRunsl[a].lterations[m].Status}
Total Parameters | Total number of parameters ${TestExecutions[n]. TestRuns[a].lterations[m].ParametersCount}
Parameters Lists all parameters in the form of Key=Value | ${TestExecutions[n].TestRuns|[a].lterations[m].Parameters}

This section will have the below appearance:

2.3.1.7.2. Test Run Iteration 1 details
Status PASS

Total Parameters | 2

Parameters Param1 = Juice,Param2 = orange

Iteration precondition definition

If a precondition is present we will use the following fields to extract that information:

Key Description Sample Code
Key Iteration precondition key ${TestExecutions[n]. TestRuns[a].Iterations[m].PreConditions[l].Key}

Definition | Iteration precondition definition = ${wiki:TestExecutions[n]. TestRuns[a].lterations[m].PreConditions[l].PreCondition.Definition}

This will produce an entry like the one below:

2.4.1.7.3. Iteration Precondition BOOK-512 Definition
Details of the Precondition

Iteration parameters details

For that given lteration we are listing the parameters used, that information is extracted with the following fields:

Key Description Sample Code
Name @ Parameter Key ${TestExecutions[n]. TestRuns[a].lterations[m].Parameters[l].Key}

Value @ Parameter Value @ ${TestExecutions[n].TestRuns[a].lterations[m].Parameters]l].Value}

It generates a table of the following form:

2.3.1.7.3. Iteration 1 Parameters details

Key Value
Param1 Juice
Param2 orange

Iteration Test Step Details

In this section we are listing the details of an iteration, we are listing each step present with details, the code we use for that purpose i present in the below

table.

Key
Step
Action
Data
Expec
ted

Result

Attac
hments

Com
ment

Defec
ts

Evide
nce

Status

Description
The Step Number
Action defined in the Test Step
Data defined in the Test Step
Expected Result defined in the Test

Step

Attachments present in each Test
Step (showing the FileURL and a
screenshot in case of the
Attachment being an image)

Comment

Defects associated to this Iteration

FileURL and screenshot (if it is an
image) of the Evidence

Test Step Status

Sample Code
${TestExecutions[n]. TestRuns[a].lterations[m]. TestSteps|[r].StepNumber}
${wiki:TestExecutions[n]. TestRuns[a].lterations[m].TestSteps[r].Action}
${TestExecutions[n]. TestRuns[a].lterations[m]. TestSteps[r].Data}

${wiki:TestExecutions[n].TestRuns[a].lterations[m].TestSteps[r]. ExpectedResult}

@({title=${TestExecutions[n].TestRuns[a].Ilterations[m]. TestSteps|[r]. Attachments[sa].Name}
|href=${TestExecutions[n].TestRuns[a].lterations[m].TestSteps[r]. Attachments[sa].FileURL}}

Y${TestExecutions[n]. TestRuns[a].lterations[m]. TestSteps|r]. Attachments[sa].
Attachment|maxwidth=100}}

${wiki:TestExecutions[n]. TestRunsl[a].Iterations[m].TestSteps[r]. Comment}

@({title=${TestExecutions[n]. TestRuns[a].Iterations[m]. TestSteps|r].Defects[dc].Key} href=${BaseURL}
Ibrowse/${TestExecutions[n].TestRuns[a].lterations[m]. TestSteps][r].Defects[dc].Key}}
@({title=${TestExecutions[n]. TestRuns[a].Iterations[m]. TestSteps|r].Evidences[e]. Name}
|href=${TestExecutions[n]. TestRuns[a].lterations[m].TestSteps[r].Evidencesl[e].FileURL}} by
${TestExecutions[n]. TestRuns[a].lterations[m]. TestSteps][r].Evidences[e].Author} - ${TestExecutions[n].
TestRuns[a].lterations[m]. TestSteps|r].Evidences|[e].Size}

1${TestExecutions[n]. TestRuns[a].lterations[m]. TestSteps|[r].Evidences[e]. Evidence|maxwidth=100}

${TestExecutions[n]. TestRuns[a].lterations[m]. TestSteps|r].Status}

The above information is gathered in a table like the one below:

2.3.1.7.4. lteration 1 Test Steps details
This Manual Test has 3 Steps

Action Data Expected Result | Attachments Comment Defects Evidences ‘ Status
1 s 1 At e s |t nsimen o o
2 | Insert Juice Juice is inserted | PASS |
3 Inorange sert %rsgr%:d s [_PASS |
Test Details

This section shows the Test details, for that we are considering the different possible Test we can have in Xray: Generic, Manual and Cucumber. For each
type we will fetch different information.

It may seem similar with the Iteration Test Step Details section but in this section we will show the Test details (not instantiated in each Iteration like the
previous section).

Type Key Description Sample Code Output

Generic | Test Test Type field = ${TestExecution
Type snl.TestRunsfal. | (712.2. 1.6. Test Details

TestType} .
- _ : Test Type Generic
Specifi = Definition of ${TestExecution
cation | the Generic s[n]. TestRuns[a]. 1e1 N .
fon | the Generic | Inl. TestRunsfa] Specification com.xpand.java.CalcTest.CanAddNumbers

Definition}

Cucum | Test Test Type field = ${TestExecution 2.4.2.6. Test Details
ber | Type s[n]. TestRuns|a]. e
TestType} Test Type Cucumber

Gherki | Gherkin ${TestExecution Gherkin Specification Scenario
n specification s[n].TestRunsl[a].
Specifi | of the Test Cucumber Given | have done a search using a valid search term
cation Scenario}
And | see a certain amount of items
#{for .
h=JQLIssuesCo When | filter using a sub-keyword
unt|clause=ke . . .
in ! Y Then The results are filtered to display a smaller amount of ite
testExampleRes
ult
('${TestExecutio
ns[n].TestRuns

[a].Key)}

${TestExecution

s[n].TestRunsl[a].
TestStepsResult
s[h]}

#end}

Manual = Step Step Number | ${TestExecution 2.1.15.6. Test Details
s[n].TestRunsla]. This Manual Test has 3 Steps

TestStepsr]. Action Data Expected Result | Attachments Comment Defects | Evidences Status
StepNumber} Open the App,
1 | choose option My | PASS]
Action | Action of the ${TestExecution Profile > Logout.
Test Step s[n].TestRunsla]. On the login
screen, select)
TeS.tStEPS[r]' 2 option | lost my | PASS
ACtIOn} password
. o Information
Data Data of the ${TestExecution On the email messagé
Test Step sinl.TestRuns[al. | |5 | oProvdeine | gmg, "Check your e
TestSteps[r]. press Reset my user@test.com ;E;IIL[;?X for
Data} Password. instructions”
Expect = Expected ${TestExecution
ed Result of the s[n].TestRunsla].
Result | Test Step TestSteps|r].
ExpectedResult}

Attach = Attachment of | ${TestExecution

ment the Test Step s[n].TestRunsl[a].
TestSteps|r].
Attachments|[sa].
FileURL}

Comm = Comment of ${wiki:

ent the Test Step TestExecutions
[n]. TestRuns[a].
TestSteps][r].
Comment}

Defects Defects ${TestExecution
associated s[n].TestRunsl[a].
with the Test TestSteps][r].
Step Defects[dc].Key}

Eviden | Evidence with = ${TestExecution

ce the Test Step s[n].TestRunsl[a].
TestSteps][r].
Evidences|e].
FileURL}}

1${TestExecution
s[n].TestRunsl[a].
TestSteps|r].
Evidences|e].
Evidence|maxwi
dth=100}

Status = Status of the ${TestExecution
Test Step s[n].TestRunsl[a].
TestSteps][r].
Status}

Requirements linked with this test

For each Test we are listing the Requirements linked

Key Description Sample Code
Requirement Key Key of the Requirement ${TestExecutions[n]. TestRuns[a].Requirements[x].Key}
Requirement Summary = Summary of the Requirement ${wiki:TestExecutions[n]. TestRuns[a].Requirements[x]. Summary}
Workflow Status Workflow status of the Requirement = ${TestExecutions[n]. TestRuns[a].Requirements[x].Status}

This section present a table with that information like the one below:

2.3.1.8. Requirements linked with this test

| Requirement Key Requirement Summary Workflow Status
ATLAS-2 As a user, | want to be enforced to have a strong In Progress
password so my account is properly secured
BOOK-507 dummy user story Open

Appendix A: Approval

This section is added for the cases where you need to have a signature validating the document.

3. Appendix A: Approval

The undersigned acknowledge they have reviewed the Test Plan and agree with the approach it presents. Changes to this Test Plan will be coordinated with

and approved by the undersigned or their designated representatives.

Signature: Date:

Print Name:

Title:

Role:

Customizing the report

Sections that can be hidden or shown

The report has some variables/flags that can be used to show or hide some sections whose logic is already implemented in the template.
These variables are defined at the top of each sheet, at the report template; the variables are scoped just to the current sheet.

On the template, use one of these values for flag type of variables:

® 0:to hide a section
® 1:to show a section

The format for other types of variables is detailed ahead.

@ Example of setting a variable to, in this case, render information on the section "Test Executions"

${set(showTestRunDetails, 1)}

Variable/flag Purpose default example(s)
showTestRunDetails render this section 0 g}set(showTestRunDetaiIs,

® format: Oorl

showTestRunEvidences render this section 0 ${set
(showTestRunEvidences, 0)}
® format: Oorl

showTestRunAttachments | render this section 0 ${set
(showTestRunAttachments,
e format: 0 or 1 0)}
showTestRunlterations render this section 0 ${set

(showTestRunlterations, 0)}
* format: O or 1

statusesToShowFirst render Test Summary section whose reported status is one in this list first (delimited by " ${set(statusesTolnclude,
comma); use an empty string " to include all statuses 'FAILED")}
(i.e., all
® format: '<statusl>,<status2>" statuses) | ${set(statusesTolnclude,

'FAIL,EXECUTING")}

${set(statusesTolnclude, ")}

Adding or removing information to/from the report

As this report is a document with different sections, if some sections are not relevant to you, you should be able to simply delete them. Make sure that no
temporary variables are created in that section that are used in other subsequent sections or if any all conditional blocks are properly closed.

To add additional information, usually we're thinking of adding:
® fields of the Test Plan itself
® fields of the Tests associated with the Test Plan
® fields of the Test Executions associated with the Test Plan

Eventually, also:

® fields of the Test Runs(s)
* fields of the covered issue(s) associated with the Test that is associated with the Test Plan

The later may be harder to implement, so we won't consider them here.

Exercise: add a field from the related Test issue
Let's say we have a "Severity" field on the Test issue that is connected to the Test Plan, and that we want to show it on the report.
We can copy the column "Summary" from the "Tests Summary" section and adapt it.
1. insert new column in the table
2. on the "Tests Summary" section,
a. copy "Summary"” (i.e., insert a column next to it and copy the values from the existing "Summary" column)

b. change
i. ${Tests[n].Summary} to ${Tests[n].Severity}

Performance

Performance can be impacted by the information that is rendered and by how that information is collected/processed.

The number of Test Runs and Tests depending on scenarios, can be considerably high, especially with CI/CD. As this report sum-up quite information,
please use it wisely.

Data-driven tests may also add an overhead, as iterations need to be individually processed, for collecting all the reported/linked defects for example.

@ Some tips

® Use the variables/flags to adjust sections or the Test Plan that will be processed/shown in the report; more info in "Customizing the
report"”
® |imit the number of input issues; in Xporter there's a global setting for this purpose

Known limitations

® Test Plan comments are not formatted
® Gherkin Scenario Outlines are not considered as data-driven (i.e., only one Test Run will appear)

	Document Generator Template: Test Plan Report

