Performance and load testing with k6

Owdnaieywou'll learn
Pre-requisites
* KPI ® Define tests using k6
0 *GBeédired<Risjtrun the test and push the test report to Xray
® |ntegratihgVelidatein Jira that the test results are available
° API
= _Junit results
® Tips
® References . .
Source-code for this tutorial

® code is available in GiHub

Overview

k6 is an open source load testing tool that uses Javascript to write the tests.
Checks and Thresholds are available out of the box for goal-oriented, automation-friendly load testing.

k6 also has a Cloud version that is a commercial SaaS product, positioning itself as a companion for the
k6 open source solution.

Pre-requisites

For this example, we will use k6 to define a series of Performance tests.

We will use the Thresholds to define KPls, that will fail or succeed the tests.

We will need:

® Access to a demo site that we aim to test
® Understand and define Keep Performance Indicators (KPI) for our performance tests
® k6 installed

Start by defining a simple load test in k6 that will target a demo site (travel agency) supplied by
BlazeMeter that you can find here.

The test will exercise 3 different endpoints:

® Perform GET requests to the "/login" endpoint

® Perform POST requests to "/reserve" endpoint (where we will attempt to to reserve a flight from
Paris to Buenos+Aires)

® Perform POSt requests to "/purchase” endpoint (where we will try to acquire the above reserved
flight adding the airline company and the price)

To start using k6 please follow the documentation.

In the documentation you will find that there are several ways to use the tool and to define performance
Tests, on our case we are targeting to have requests that will exercise some endpoints in our application
and that will produce a failed or successful output based on the KPIs that are suited for our application.
Keep in mind that we also want to execute these Tests in a CI/CD tool and ingest the results back to
Xray.

The tests, as we have defined above, will target three different endpoints, for that we have started by
writing a default function().


https://k6.io/open-source
https://k6.io/docs/using-k6/checks/
https://k6.io/docs/using-k6/thresholds/
https://k6.io/open-source
https://github.com/microsoft/playwright-test/blob/master/README.md
https://k6.io/open-source
https://k6.io/docs/using-k6/thresholds/
https://blazedemo.com/
https://k6.io/open-source
https://k6.io/open-source
https://blazedemo.com/
https://k6.io/open-source
https://k6.io/docs/cloud/
https://github.com/Xray-App/tutorial-js-k6

k6Performance.js

export default function () {

Next we have created three objects that are mirroring the operations we want to exercise:

" |oginReq
" reserveReq
= purchaseReq

For each, we have defined the endpoint we want to access, the parameters needed to perform the
operation; that are previously defined in constants. And finally, set the Tests to run in parallel, in a batch,
as you can see below:

kéPerformance.js

const BASE _URL = 'http://blazedeno. coni;

const reserveParans = new URLSear chParanms([
["fronPort', 'Paris'],
['toPort', 'Buenos+Aires'],
1)
const purchaseParans = new URLSear chPar ans( [
['fromPort', 'Paris'],
['toPort', 'BuenostAires'],
["airline', 'Virgin+Anerica'],
["flight', "43'],
["price', '472.56"]
1)

let loginReq = {

met hod: ' GET',

url: BASE_URL+'/login',
b

let reserveReq = {
met hod: ' POST',
url: BASE_URL+'/reserve. php',
parans: {
reservePar ans,
I
b

| et purchaseReq = {
met hod: ' POST',
url: BASE_URL+'/purchase. php',
parans: {
pur chasePar ans,
H
b

| et responses = http.batch([|ogi nReq, reserveReq, purchaseReq]);

Notice that this is only one of the possibilities to define a load test, k6 have very different ways to support
your performance testing, for more information please check the documentation.

After having all of that defined we need to instruct k6 on how to use that information to execute the load
test, for that k6 have the options function.

We have defined it like below:


https://k6.io
https://k6.io/docs/cloud/
https://k6.io
https://k6.io

export let options = {
stages: [
{ duration: "1m, target: 50 },
{ duration: '30s', target: 50 },
{ duration: "1ni, target: 0},

These options will instruct k6 how we want to execute the performance test, in more detail, this means
that we will ramp up VUs (virtual users) to reach 50 VUs in one minute, maintain those 50 VUs for 30
seconds and decrease the users until 0 in on minute. The requests will be randomly chosen from the http.
batch entries we have defined earlier.

In order to execute the tests you can use several ways, for our case we are using the command line.

k6 run k6Performance.js

The command line output will look like below:

This will be enough to execute performance tests, however a manual validation of results must always be
done in the end to assess if the performance is enough or not, and looking at Json files is not always
easy.

We need the ability to:

* Define KPI that will assert the performance results and fail the build of they are not fulfilled in an
automated way (this will be useful to integrate in CI/CD tools)
® Convert the KPI result in a way that can be ingested in Xray

In order to do that we will use the Thresholds available in k6 and use the handleSummary callback to
generate a Junit Test Result file ready to be imported to Xray. Notice that in this function you can parse
and generate the output that is better suited for your tests.

KPI

In order to use performance tests in a pipeline we need those to be able to fail the build if the result is not
the expected, for that we need to have the ability to automatically assess if the performance tests were
successful (within the parameters we have defined) or not.

k6 have out of the box the ability to define Thresholds, in our case we want to define the following ones
globally:

® the 90 percentile exceed 500ms an error will be triggered,
® the requests per second will exceed 500ms an error will be generated
® any error appear during the execution an error will be triggered (because of the error rate KPI).


https://k6.io/docs/using-k6/thresholds/
https://k6.io/docs/results-visualization/end-of-test-summary/#handlesummary-callback
https://k6.io/docs/using-k6/thresholds/

To achieve this we have added the following thresholds in the options :

export let options = {
stages: [
{ duration: '"1m, target: 50 },
{ duration: '30s', target: 50 },
{ duration: '1nm, target: 0},
1.
threshol ds: {
http_req_failed: [{threshold:'rate<0.01', abortOnFail: true,
del ayAbortEval : '10s'},], /Il http errors should be less than 1%
http_req_duration: [{threshold:'p(90)<500", abortOnFail: true,
del ayAbortEval : '10s'},], // 90% of requests should be bel ow 200ns
http_reqgs: [{threshold:'rate<500", abortOnFail: true, del ayAbortEval:
"10s'},] // http_reqgs rate should be bel ow 500ms
}
b

Once we execute the test again we will notice that now we have information about the assertions and
those results can be acted upon:

run —out jsan=my_test_result.json kéPerformance.js

scenarios:
* default: Up to 5 looping Ws for 2m3@s over 3 stages (gracefulRampDown: 30s, gracefulStop:

running (em22.65), 60/50 VUs, 113 complete and 18 interrupted iteration
> 17/50 s on:
ring the end-of-test summary...

http_req_connecting
q_duration
d_response: true ).

ceil
http_req_sending.
http_req_tls_handshaking.
http_req_waiting
http_reqs.
iteration_duration min=;
iterations

min=;

vus_nax s esholds have failed

Generate Junit

Now we are executing Tests to validate the performance of our application and we are capable of
defining KPlIs to validate each performance indicator in a build (enable us to add these Tests to CI/CD
tools given that the execution time is not long), so what we need is to be able to ship these results to
Xray to bring visibility over these types of Tests also.

k6 prints a summary report to stdout that contains a general overview of your test results. It includes
aggregated values for all built-in and custom metrics and sub-metrics, thresholds, groups, and checks.

k6 also have available the possibility to use the handleSummary callback, in this callback we can define
in which way we want the output to be generated, it provides access to the data available in the test and
allow to treat that data in the way you see fit for your purpose.

In our case we used pre-defined functions to produce 3 outputs and added code to produce a JUnit
report with more information to be imported to Xray:

textSummary - to write in stdout the summary of the execution.

jUnit - to write to a xml file the JUnit results of the Tests.

JSON.stringify - to produce a json file with the summary of the requests and metrics.
generateXrayJUnitXML - to write a xml JUnit file with extra information, such as, more detail
information of the thresholds and the ability to add a file as an evidence.

The code added will look like this:


https://k6.io/docs/using-k6/metrics#built-in-metrics
https://k6.io/docs/using-k6/metrics#custom-metrics
https://k6.io/docs/using-k6/thresholds
https://k6.io/docs/using-k6/tags-and-groups#groups
https://k6.io/docs/using-k6/checks
https://k6.io/docs/results-visualization/end-of-test-summary/#handlesummary-callback

k6Performance.js

export function handl eSumrary(data) {
consol e.l og(' Preparing the end-of-test summary...');

return {
"stdout': textSummary(data, { indent: ' ', enableColors: true}), //
Show t he text summary to stdout. ..
" Jjunit.xm': jUnit(data), // but also transformit and save it as
a Junit XM....
‘. /summary.json': JSON.stringify(data), // and a JSON with all the
details...
".IxrayJunit.xm': generateXrayJUnit XM (data, 'sunmmary.json',
encodi ng. b64encode(JSON. stringify(data))),
/1 And any other JS transformati on of the data you can think of,
/1 you can wite your own JS helpers to transformthe summary data
however you |ike!
}
}

The xrayJunit.xml file generated is:

xrayJunit.xml

<?xm version="1.0"?>

<testsuites tests="3" failures="1">

<testsuite nanme="k6 threshol ds" tests="3" failures="1"><testcase nane="
http_req_failed - rate<0.01"><system out ><! [ CDATA[ Val ue regi stered for
http_req_failed is within the expected val ues(rate<0.01). Actual val ues:
http_req_failed = 0.00%]></system out ><properties><property name="
testrun_comrent " ><! [ CDATA[ Val ue registered for http_reqg_failed is within
the expected val ues- rate<0.01]]></property><property nanme="

test _description"><![ CODATAl Threshol d for http_req_failed]]><

/ property><property name="test_summary" value="http_req_failed - rate<0.01"
| ></ properties></testcase>

<testcase name="http_reqgs - rate<100"><system out><![ CDATA[ Val ue

registered for http_reqs is within the expected val ues(rate<100). Actual

val ues: http_reqs = 50.33875387867754/s]]></system

out ><properti es><property nanme="testrun_coment"><![ CDATA[ Val ue regi stered
for http_regs is within the expected val ues- rate<100]]><

/ property><property nane="test_description"><![ CDATA[ Threshold for
http_reqs]]></property><property nane="test_summary" value="http_reqs -

rat e<100"/ ></ properti es></testcase>

<testcase name="http_reqg_duration - p(90)<500"><failure nessage="Val ue
registered for http_req_duration is not within the expected val ues(p(90)
<500). Actual values: http_req_duration = 525.57" /><properties><property
nane="t estrun_comment " ><! [ CDATA[ Val ue regi stered for http_req_duration is
not within the expected val ues - p(90)<500]]></property><property nane="
test_description"><![ CDATA[ Threshol d for http_req_duration]]><

/ property><property nanme="test_summary" val ue="http_req_duration - p(90)
<500"/ ><property nane="testrun_evi dence"><item nanme="summary.j son"
>eyJyb290X2dyb3V j p71 m ki j oi ZDQ«ZDhj ZDk4Zj AwYj | wNGUS ODAWOTK 4 ZWNMODQyN2Ui LC
JncnBl1lcHM A t dLCJj aGvj a3M A t 71 nBhdCGgi O 1 60nNNOYXR1cyB3YXMgM Awl i wi aWQ O | xN
DYXN YWNz U3YTkx M2QOZm 4MhFj NGMLZTEWVDI kZSI s| nBhc3N cyl 6MOW ZnFpbHM G | 2Ni wi
bnFt ZSI 61 NnNOYXR1cyB3YXMgM AM n1dLCIuYWLI | j oi |'i wi cGFOaCl 61 i J9LCIvcHRpb25z1j p
71 nNLbWLhenl UcmVuZFNOYXRzI1 j pbl nF2Zyl sl mlpbi | sl nill ZCl sI mLheCl sl nAoOTApl i wi cC
g5NSki XSwi ¢3Vt bWFy eVRpbW/Vb Ol j oi | i wi bmBDb2xvci | 6ZnFsc2VILCIzdGF0ZSI 6eyJpc
1NOZE91dFRUWEI 6dHI1ZSw aXNTdGRFcnJUVFki OnRydWUs| nRl ¢3RSAWAEdXJhdd vbk1zl j oz
M AWy 4xNzZ9LCJIt ZXRyaWhz| j p71 mhOdHBf cnvxX3dhaXRpbnti Onsi dnFsdWzl j p71 miheCl
6MIMyOC41NDI s| nAoOTApl j 01M AuM cxLCIWKDk1KSI 6Nj A1Lj @Mz k50Tk50Tk50Tks| nF2Zy
1 6M cyLj ALM ULMz YSMzMLOOW bW ul j oxMzkuOTU4LCIt ZWQ G | ONCASMDNOLCI0eXBl | j oi d
HII bnQ LCJj b250YW ucy! 61 nRpbWUi f Swi aHROCF9yZXFzl j p71 nR5cCUi O Jj b3VudGwyl i wi
Y29udGFpbnM G JkZWZhdWkOl i wi dnFsdW/zl j p71 nJhdGUi § UwLj Mz ODc 1Mz g30DY3Nz UOLCJ
j b3VudCl 6MIYxMX0s| nRocnVza@sZHM Onsi cnFOZTwx MDAI Onsi b2si OnRydW/9f X0s1 mhOdH
Bf cnmVxX3Rsc190YWskc2hha2l uZyl 6eyJj b250YW ucyl 61 nRpbWUi LCI2YWK1ZXM Onsi YXZnl



j owLj ULNTQ2Mz YANz ELMDgzNzks| milpbi | 6MOwW bW/KI j oW CJt YXgi G UALj UzM wi cCg5MCki
Qg Asl nAoOTUpl j owf Swi dH wZSI 61 nRyZWskl nOs| mNoZWNr cyl 6eyJ0eXBI | j oi cnFOZSI sl miN
vbnRhaWbzl j oi ZGVimMYXVsdCl sl nZhbHVI cyl 6eyJyYXRI | j owLCIWYXNzZXM G Asl nzhaVWkzl j
oyN Z9f Swi ZGFOYVOyZWNl aXZl ZCl 6eyJ0eXBl | j oi Y291bnRl ci | s| mM\vbnRhaWbzl j oi ZGFOY
Sl sl nZhbHVI cyl 6eyJj b3VudCl 6NDg30TcxNSwi cnF0ZSI 6MIUyNDc 1Lj k2 MDUx MDkx OT1 4f X0s
I mhOdHBf cnvxX2Nvbnbl Y3Rpbnti Onsi dH wZSI 61 nRyZWbk! i wi Y29udGFpbnM O JOaWLl | i w
i dnFsdW/zl j p71 nilpbi | 6MOW bW/K I j owLCJt YXgi G MDLj YONOw cCg5MCki G Asl nAoOTUpl j
0yNCA3MTEs| nF2Zy1 6M5420TI 5Mz YWN] QLNTYxNz Y2f X0s| mhOdHBf cnVxX2R1cnFOavul j p7I1
nR5cGUi O JOcnmVuZCl sl mM\vbnRhaWszl j oi dA@ t ZSI s| nZhbHVI cy| 6ey JWKDkwWKSI 6NTI 1Lj U3
LCIWKDK1KSI 6Nj EzLj kxM @OTk50Tk50Tks| nF2Zyl 6M c1Lj k3NDgOMIA5M Q40TYs| nmilpbi |
6MIQMLj AwOSwW bWk j oyNTAUNj g5LCIt YXgi G EzNDEUM k3f Swi dGnyZXNob2xkcy| 6eyJwKD
KWKTWLMDAI Onsi b2si OnzhbHNI f X19LCJodHRWX3JI cV9zZWskaWsnl j p71 nR5cGUi G JOcnmuZ
Cl sl mMivbnRhaWszl j oi dd t ZSI sl nZhbHVI cyl 6ey JwKDk 1KSI 6MCAX MDQLLCIhdnti § AuMDQL
NTcxN KONTk5Nj | 3NzEs| niLpbi | 6MCAWMVDks| niLl ZCl 6MCAWVE Us| mLheCl 6MCAYNj Qs| nAoCTA
plj owlj AAN319LCIKYXRhX3N bnQ Onsi Y29udGFpbnM O JkYXRh! i wi dnFsdW/z1 j p71 m\vdW
501 j oyM M2M Usl nJhdGUi § Y50DcuNTg3Nz Mk OTE3N A2f Swi dH wZSI 61 m\vdWs0ZXI i f Swi a
HROcF9y ZXFf YnxvY2t | ZCl 6eyJ0eXBl | j oi dHII bnQ LCJj b250YW ucy! 61 nRpbWJi LCI2YWk 1
ZXM Onsi bW ul j owmLCIt ZWQ G AuMDAzLCJt YXgi G gyLj ASNOw ¢ Cg5MCki G AuMDASLCIWKDK
1KSI 6M UuM | xNSwi YXZnl j oyLj | 2MIEONTg3M EyOTELf X0s| nZ1c19t YXgi Onsi dH wZSI 61 m
dhdWil 1'i wi Y29udGFpbnM O JkZWZhdWkOI i wi dnFsdW/zl j p71 nZhbHVI | j 01MOW bW ul j 01M
Owi bWF4I1 j 01MHI9LCI2dXM Onsi dHI wZSI 61 mdhdWil i wi Y29udGFpbnM O JkZWZhdWKOI i wi
dnFsdW/zl j p71 nZhbHVI | j oyNywi bW ul j oxLCJt YXgi G | 3f X0s| mhOdHBf cmivx X3J1 Y2Vpdm
uZyl 6eyJ0eXBl | j oi dHII bnY LCJj b250YW ucyl 61 nRpbWUi LCI2YWk1ZXM Onsi cCg5MCki
ExLj E2M wi cCg5NSki G EzLj k4CODUs| nF2Zy 1 6My44Nz Y3MTUSMDQLMz EzZNDI 1LCIt aWdi § AuM
DE5SLCIt ZWQ G AuMTMs| niLheCl 6MzI uOTQ2f X0s| ml 0ZXJhdd vbnM Onsi dH wZSI 61 mi\vdWs0
ZXI'i LCIj b250YW ucyl 61 nRl ZnF1bHQ LCI2YWk1ZXM Onsi Y291bnQ G | 000w cnF0ZSI 6Ny 4
3NDky Mz A40Dg4Mz Qy QDI 1f X0s| mhOdHBf cnmivxX2ZhaWwk! ZCl 6eyJ0eXBl | j oi cnFOZSI s| m\vbn
RhaWbzl j oi ZGVmYXVsdCl sI nZhbHVI cyl 6eyJWYXNzZXM G Asl nzhaWkzl j oxNj EXLCIyYXRI |
j owf Swi dGhyZXNob2xkcyl 6eyJyYXR PDAUMDEI Onsi b2si OnRydW/9f X0s1 ml 0ZXJhdd vbl 9k
dXJhdd vbi | 6eyJ0eXBl | j oi dHII bmQ LCJj b250YW ucyl 61 nRpbWJi LCI2YW1ZXM Onsi bWF
41 j oyNTQzLj AWMTkONywi cCg5MCki § ESMDI uM k1M A30Cwi cCg5Nski § E5Nj EuM MBMVDI 3Mez
Usl nF2Zy| 6MIY1IM 44NTk3ODE4OTUXN ESLCIt aWhi O EOMDMUNDQyNTC5LCIt ZWQ § E2MIUuO
TMLM Yy OTk50Tk50H19LCIodHRWX3J1 cVOkdXJhdd vbnt | eHBI Y3RI ZF9y ZXNwb25zZTpOcn\
f Sl 6eyJ0eXBl | j oi dHJI bnQ LCJj b250YW ucyl 61 nRpbWJi LCI2YW1ZXM Onsi YXZnl j oyNzU
uOTcO0ODQx MDky NDg5Ni wi bW ul j oxNDAUMDASLCIt ZWQ G | 1MCA2CDks | mLheCl 6 MTMDMVB4y OT
csl nAoOTApl j 01M UuNTcsl nAoOTUpl j 02MITMUCTEY NDk50TKk50Tk50X19f X0=</i t enp<

/ property></properti es></testcase>

</testsuite >

</testsuites >

With the extra code we have added extra information to the JUnit report, it is based in the default JUnit
available in k6 with extra fields added.

To achieve it, we have added and extra file: "junitXray.js" that will handle these new informations.

The main method is the one that will generate the JUnit report.

junitXray.js

export function generateXrayJUnitXM. (data, fileName, fileContent, options)

{

var failures = 0
var cases = []
var nergedOpts = Object.assign({}, defaultOptions, data.options,

options);

forEach(data.metrics, function (nmetricNane, netric) {
if (!'metric.thresholds) {
return
}
forEach(metric.thresholds, function (threshol dNane, threshold) {
if (threshold.ok) {
cases. push(
'<testcase nane="' + escapeHTM.(netricNane) + ' - ' +
escapeHTM.(t hreshol dNane) + '">'" +
' <syst em out ><! [ CDATA[ Val ue registered for ' + netricNanme + '



is within the expected values('+ threshol dNane +'). Actual values: '+
metricNane +' ="' + getMetricValue(netric, threshol dNane, nergedOpts)+ ']]
></systemout>' +
' <properties> +
' <property nanme="testrun_coment " ><![ CDATA[ Val ue
registered for ' + netricNane + ' is within the expected values- ' +
threshol dName + ']]></property> +
' <property nanme="test_description"><![ CDATA] Threshol d for
"+ netricName +']]></property> +
' <property nanme="test_sunmary" val ue= + escapeHTML
(metricNane) + ' - ' + escapeHTM.(threshol dNane) + '"/>' +
'</properties> +
'</testcase>
)
} else {
failures++
cases. push(
' <t est case nane= + escapeHTM.(netricNanme) + ' - ' +
escapeHTM.(t hreshol dNanme) +' ">' +
'<failure message="Val ue registered for ' + netricName +
is not within the expected val ues('+ escapeHTM.(t hreshol dNane) +'). Actua
val ues: '+ escapeHTM.(nmetricName) + ="' + getMetricValue(netric
t hreshol dNarme, nergedQOpts) + " /> +
' <properties> +
' <property nane="testrun_comment"><![ CDATA[ Val ue
regi stered for + netricName + ' is not within the expected values - '+
threshol dName + ']]></property> +
' <property nane="test_description"><![CDATA[ Threshol d for
"+ metricName +']]></property> +
' <property nane="test_sumary" val ue="' + escapeHTM.
(metricNane) + ' - ' + escapeHTM.(threshol dNane) + '"/>'" +
' <property name="testrun_evi dence">" +
"<itemname=""'+ fileName + "> +
fileContent +
"</item' +
'</property>' +
</ properties> +
'</testcase>
)
}

i3]
1)

var nane = options &% options.nane ? escapeHTM.(options.nane) : 'k6
t hreshol ds’

return (
'<?xm version="1.0"?>\n<testsuites tests=""' +
cases.length +
" failures=""' +
failures +
'ts\n' o+
<testsuite name="' +
name +
" tests=""' +
cases.length +
failures="" +
failures +
US4
cases.join('\n") +
"\n</testsuite >\n</testsuites >

As you can see we are treating two cases:



" When the threshold is ok, we add properties that will enrich the report in Xray, namely:
comment, description and summary.

® When the threshold is not ok, we add the same above properties plus a failure message and an
evidence file that will holds the details of the performance Test.

This is just an example of one possible integration, you can reuse it or come up with one that better
suites your needs.

Integrating with Xray

As we saw in the above example, where we are producing Junit report with the result of the tests, it is
now a matter of importing those results to your Jira instance, this can be done by simply submitting
automation results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for
Jenkins) or using the Jira interface to do so.

In this case we will show how to import via the API.

API

Once you have the report file available you can upload it to Xray through a request to the REST API
endpoint, and for that the first step is to follow the instructions in v1 or v2 (depending on your usage) to
include authentication parameters in the following requests.

Junit results

We will use the API request with the addition of some parameters that will set the Project to where the
results will be uploaded and the Test Plan that will hold the Execution results.

In the first version of the API, the authentication used a login and password (not the token that is used in
Cloud).

curl -H "Content-Type: nultipart/formdata" -u admn:adnmin -F
"file=@rayJunit.xm" http://yourserver/rest/raven/1.0/inport/execution
/junit?proj ect Key=XT& est Pl anKey=XT- 316

With this command we are creating a new Test Execution that will have the results of the Tests that were
executed and it will be associated to the Test Plan XT-316.

Once uploaded the Test Execution will look like the example below

B st

Qonment

We can see that a new Test Execution was created with a summary automatically generated and 3 Tests
were added with the corresponding status and summary (matching the information from the xml report).

In order to check the details we click on the details icon next to each Test


https://docs.getxray.app/display/XRAY/REST+API
https://docs.getxray.app/display/XRAY/REST+API
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST+v2

Showing 1103 0f 3 entries Frst previous [l Next L

> Attachments

ABORTED

> Structure

It will take us to the Test Execution Details Screen

~ Test Details gz

> ctivy

In the Test Execution details we have the following relevant information:

® Summary - Combination of the Metric and the Threshold defined in the KPIs.

Execution Status - Fail, this indicates the overall status of the execution of the Performance
Tests.

Evidence - Holding the file with more detailed information about the performance Test.
Comment - Showing the comment we have defined in the XrayJunit.xml file.

Test Description - Allowing adding a specific description for the Test Execution.

Definition - A unique identifier generated by Xray to uniquely identify this automated Test
Results - Detailed results with information of the KPI's defined and the value that as breached
the KPlIs (in case of failure).

Bringing the information of performance tests to your project will allow a complete view over the Testing
process and bring that visibility up front for the team to have all the elements necessary to deliver a
quality product.

Tips

® after results are imported in Jira, Tests can be linked to existing requirements/user stories, so
you can track the impacts on their coverage.

® results from multiple builds can be linked to an existing Test Plan, to facilitate the analysis of
test result trends across builds.

® results can be associated with a Test Environment, in case you want to analyze coverage and
test results using that environment later on. A Test Environment can be a testing stage (e.g.
dev, staging, preprod, prod) or an identifier of the device/application used to interact with the
system (e.g. browser, mobile OS).

References

® https://k6.io/open-source


https://k6.io/open-source

® https://ké.io/docs/cloud/
® https://k6.io/docs/
® demo site


https://k6.io/docs/cloud/
https://k6.io/docs/
https://blazedemo.com/

	Performance and load testing with k6

