
Testing REST services and APIs in Java using REST
Assured and JUnit

Overview
REST Assured concepts

Description
Tips
References

Overview
Services are usually acessed using APIs. REST APIs are common both in internal services and in public facing services.

Whenever testing REST APIs, we can either be targeting the client/consumer or the server/producer.

In this tutorial we'll show you how a REST API can be tested using Java and the REST Assured library, together with JUnit and WireMock.

REST Assured is a Java library that implements a DSL in order to easily validate REST API based services by abstracting low-level details of HTTP
requests and of parsing responses.

It provides a based on Gherkin (i.e. given, when, then) for better readability.syntax

From REST Assured documentation, imagine that you have a REST based service accessible in the endpoint, }http://localhost:8080/lotto/{id
and returning a JSON content.

{
 "lotto":{
 "lottoId":5,
 "winning-numbers":[2,45,34,23,7,5,3],
 "winners":[
 {
 "winnerId":23,
 "numbers":[2,45,34,23,3,5]
 },
 {
 "winnerId":54,
 "numbers":[52,3,12,11,18,22]
 }
]
 }
}

Also ensure that you have a JUnit test to check that the HTTP response code is OK (i.e. 200) and that the "lotto" object returned is correct. This could be
something as follows.

@Test public void
lotto_resource_returns_200_with_expected_id_and_winners() {

 when().
 get("/lotto/{id}", 5).
 then().
 statusCode(200).
 body("lotto.lottoId", equalTo(5),
 "lotto.winners.winnerId", hasItems(23, 54));

}

This takes advantage of the , a simple JSON parser (there's also an equivalent for XML: XmlPath).JsonPath

If required, it's also possible to perform JSON Schema validation.

https://rest-assured.io/
https://github.com/rest-assured/rest-assured/wiki/Usage#syntactic-sugar
https://github.com/rest-assured/rest-assured/wiki/GettingStarted#jsonpath

REST Assured concepts

In REST Assured it's all about being able to quickly perform HTTP REST requests and to verify the response easily, no matter if it's JSON or XML based.

Main concepts include:

request specification - the definition of the request (e.g. URL, authentication, etc); the object is usually specified using RequestSpecification giv
 and en() when().

response specification - the definition of the response (e.g. body, status code); the object is usually specified using ResponseSpecification the
n()
parser - an entity responsible for processing and abstract the body content of the response, so that data can easily be referred in the matchers
/assertions
matchers - used to match either built-in ones (io.restassured.matcher RestAssuredMatchers or from (org.hamcrest Matchers. .*) Hamcrest . .*).

Note: it's possible to reuse request specifications or response specifications between multiple requests/responses for different tests (more info). This here
can be extremely useful if you need to perform a set of common assertions (e.g. status code being OK) for a bunch of tests.

Description
In this tutorial, we'll use the code from ; you may want to check the for further Bas Dijkstra open-source workshop on REST Assured workshop presentation
detail.

We aim to test a service that provides an API (i.e.) to obtain location data based on postal/zip codes on several countries.http://api.zippopotam.us/

The workshop provides some exercises, stored under ; it also provides the answers.src/test/java/exercises

As an example, lets implement a test for checking that the API returns the correct state, in the correct order, for a given zip code of US.

example of a test from RestAssuredAnswers1Test.java

 /***
 * Send a GET request to /us/90210 and check
 * that the state associated with the first place
 * in the list returned is equal to 'California'
 *
 * Use the GPath expression "places[0].state" to
 * extract the required response body element
 **/

 @Test
 public void requestUsZipCode90210_checkStateForFirstPlace_expectCalifornia() {

 given().
 spec(requestSpec).
 when().
 get("/us/90210").
 then().
 assertThat().
 body("places[0].state", equalTo("California"));
 }

Another variant of it could be performing data-driven testing to check the returned "state" for a set of input data (e.g. country+zip code).

Please note

To be clear, in this project, tests are performed against the server provided by WireMock that mocks responses from the API; this was done just
by convenience of the workshop, so it's not dependent on the public server availability. In a real scenario, you would perform tests against the
target service or you use WireMock to validate your client/consumer library implementaiton.

http://hamcrest.org/JavaHamcrest/
https://github.com/rest-assured/rest-assured/wiki/Usage#specification-re-use
https://github.com/basdijkstra/rest-assured-workshop
https://github.com/basdijkstra/rest-assured-workshop/blob/master/RestAssuredWorkshop.pdf
http://api.zippopotam.us/
https://github.com/basdijkstra/rest-assured-workshop/tree/master/src/test/java/exercises

code snippet from RestAssuredAnswers2Test.java

..
 /***
 * Create a DataProvider with three test data rows:
 * ------------------------------------
 * country code | zip code | state
 * ------------------------------------
 * us | 90210 | California
 * us | 12345 | New York
 * ca | Y1A | Yukon
 **/

 @DataProvider
 public static Object[][] zipCodeData() {
 return new Object[][] {
 { "us", "90210", "California" },
 { "us", "12345", "New York" },
 { "ca", "Y1A", "Yukon" }
 };
 }

 /***
 * Request zip code data for the given country / zip
 * combinations by sending a GET to /<countryCode>/<zipCode>.
 *
 * Use the test data collection created
 * above. Check that the state returned by the API
 * matches the expected value.
 *
 * Use the GPath expression "places[0].state" to
 * extract the required response body element
 **/

 @Test
 @UseDataProvider("zipCodeData")
 public void checkStateForCountryCodeAndZipCode(String countryCode, String zipCode, String
expectedState) {

 given().
 spec(requestSpec).
 and().
 pathParam("countryCode", countryCode).
 pathParam("zipCode", zipCode).
 when().
 get("/{countryCode}/{zipCode}").
 then().
 assertThat().
 body("places[0].state",equalTo(expectedState));
 }

...

We'll see ahead how this specific data-driven test will be mapped to Jira.

Tests can be run using Maven; in this case, we'll be only executing the ones inside the "answers" package.

example of a Bash script to run the tests

mvn clean compile test -Dtest=answers.*

Since the previous command generates multiple JUnit XML files, we may need to merge them into a single XML file so it can be submitted into a Test
Execution more easily. That can be achieved by using the junit-merge utility.

https://www.npmjs.com/package/junit-merge

junit-merge -d target/surefire-reports/ -o merged-test-results.xml

After successfully running the tests and generating the aggregated JUnit XML report (e.g., merged-test-results.xml), it can be imported to Xray (either by
the or through theREST API Import Execution Results action within the Test Execution, or even by using a). CI tool of your choice

Each JUnit test is mapped to a Generic Test in Jira, and the field contains the name of the package, the class and the method Generic Test Definition
name that implements the Test Case. The summary of each Test issue is filled out with the name of the method corresponding to the JUnit Test.

The Execution Details page also shows information about the Test Suite, which in this case corresponds to the Test class, including its namespace.

https://docs.getxray.app/display/XRAY/Import+Execution+Results+-+REST
https://docs.getxray.app/display/XRAY/Integrations

Tips
Multiple runs of your tests can be grouped and consolidated in a Test Plan, so you can have an updated overview of their current state
After importing the results, you can link the corresponding Test issues with an existing requirement or user story and thus truck coverage directly
on the respective issue, or even on a Agile board

Please note

In the case of data-driven tests, as the JUnit XML report treats each row of the data provider as a different "test case," you will end up with
several Tests in Xray.

References
https://rest-assured.io/
https://github.com/rest-assured/rest-assured
REST Assured Usage Guide
Bas Dijkstra open-source workshop on REST Assured
Bas Dijkstra blog entry about WireMock
WireMock

https://rest-assured.io/
https://github.com/rest-assured/rest-assured
https://github.com/rest-assured/rest-assured/wiki/Usage
https://github.com/basdijkstra/rest-assured-workshop
https://www.ontestautomation.com/getting-started-with-wiremock/
http://wiremock.org/

	Testing REST services and APIs in Java using REST Assured and JUnit

