Integration with Azure DevOps

Azure DevOps (previously known as VSTS) is an ALM solution that provides a set of cloud based tools for helping building and deploy software to the
cloud.

Some teams may be using subsets of the Azure DevOps tool portfolio.

In this example we'll explore the scenario where you aim to use Azure DevOps to build and run the automated tests and finally report the results back to
Xray.

@ Please note

Currently, Xray does not provide any plugin for Azure DevOps in order to submit automation related results. However, that can be easily
achieved using the REST API, as shown in this tutorial.

® Integration scenarios
© Using Azure DevOps for CI
= JUnit example
© Using Azure DevOps to store code and Jenkins to manage the builds
= JUnit example
® Triggering automation from Xray side
® References

Integration scenarios
There are several integration possibilities with Azure DevOps; this documentation depicts some them.
As Azure DevOps is a "full" ALM solution, you can use some parts of it and use other tools to "replace"” some built-in features.

Lets explore some integration possibilities.

Using Azure DevOps for Cl

This scenario explores usage of the Pipelines facility from Azure DevOps to, similarly to what happens with other well-known CI tools, build the software
and run the automated tests.

JUnit example
In this scenario, we want to get visibility of the automated test results from some tests implemented in Java, using the JUnit framework.
This recipe could also be applied for other frameworks such as NUnit, TestNG or Robot.

Within the Repos section of Azure DevOps, we need to setup the code repository containing the code along with the configuration file for Azure Pipelines
build process.

The tests are implemented in a JUnit class as follows.

https://confluence.xpand-it.com/display/XRAYCLOUD/Import+Execution+Results+-+REST

CalcTest.java

package com xpand. j ava;

inport org.junit.After;
import org.junit.Before;
import org.junit. Test;

import static org.hantrest. CoreMatchers.is;
inport static org.junit.Assert.assertThat;

public class Cal cTest {

@efore
public void setUp() throws Exception {

}

@fter
public void tearDown() throws Exception {

}

@est

public void CanAddNunbers()

{
assert That (Cal cul ator. Add(1, 1), is(2));
assert That (Cal cul ator. Add(-1, 1), is(0));

@est

public void CanSubtract ()

{
assert That (Cal cul ator. Subtract (1, 1), is(0));
assert That (Cal cul ator. Subtract (-1, -1), is(0));
assert That (Cal cul ator. Subtract (100, 5), is(95));

@est

public void CanMil tiply()

{
assertThat (Cal cul ator. Mul tiply(1l, 1), is(1));
assertThat (Cal cul ator. Mul tiply(-1, -1), is(1));
assert That (Cal cul ator. Mul ti pl y(100, 5), is(500));

public void CanDi vide()

{
assertThat (Cal cul ator. Divide(1, 1), is(1));
assertThat (Cal cul ator. Divide(-1, -1), is(1));
assert That (Cal cul ator. Di vi de(100, 5), is(20));

}

@est

public void CanDoStuff ()

{
assertThat (true, is(true));

}

The Azure Pipelines configuration file azur e- pi pel i nes. yni contains the definition of the build steps, including running the automated tests and
submitting the results.

azure-pipelines.yml

Maven

Build your Java project and run tests w th Apache Maven.

Add steps that analyze code, save build artifacts, deploy, and nore:
https://docs. m crosoft.conf azure/ devops/ pi pel i nes/ | anguages/ j ava

trigger:
- master

pool :
v mage: ' Ubunt u-16. 04'

st eps:
- task: Maven@
inputs:
mavenPonFil e: 'java-junit-cal c/pomxm’
mavenOpti ons: ' -Xnx3072m
j avaHonmeOpti on: ' JDKVersion'
j dkVersionOption: '1.11
j dkArchitectureOption: 'x64'
publ i shJUnit Resul ts: false
testResul tsFiles: '**/surefire-reports/ TEST-*. xnl"'
goals: 'clean conpile test'
- bash: |

curl -H "Content-Type: nultipart/formdata" -u ${jira_user}:${jira_password} -F "file=@arget/surefire-
reports/ TEST-com xpand. j ava. Cal cTest. xm " "${jira_server_url}/rest/raven/ 1. 0/inport/execution/junit?
proj ect Key=${ pr oj ect _key}"

In order to submit those results, we'll just need to invoke the REST API (as detailed in Import Execution Results - REST).

However, we do not want to have the Xray API credentials hardcoded in pipeline's configuration file. Therefore, we'll use some environment variables
defined in Pipeline "variables" settings, including:

® jira_user: for the Jira username
® jira_password: for the Jira user's password
® jira_server_url: for the Jira's base URL (e.g. http://yourjiraserver)

® project_key: project key

@ Please note

The user present in the configuration below must exist in the Jira instance and have permission to Create Test and Test Execution Issues.

https://docs.getxray.app/display/XRAY/Import+Execution+Results+-+REST

Azure DevOps sergiofreire / DEmo2 / Pipelines L Ssearch
DEMO2 + & - > DEMO2
Overview

YAML Variables Triggers History Summary [> Queue

4 PDAaED B O

Boards Pipeline variables Name 1 Value
Repos Variable groups jira_password
Predefined variables 12 jira_server_url https://sandbox.xpand-it.com/
Pipelines
jira_user e

N ;
& Builds project_key CALC
& Releases system.collectionld 14a7327e-955b-48b8-b789-e785547c47a4
I\ Library system.definitionld 2
= Task groups system.teamProject DEMO2

In azur e- pi pel i nes. ym a "bash" based step must be included that will use "curl" in order to submit the results to the REST API.

curl -H "Content-Type: multipart/formdata" -u $(jira_user):$(jira_password) -F "file=@arget/surefire-reports
| TEST- com xpand. j ava. Cal cTest.xm " "$(jira_server_url)/rest/raven/1.0/inport/execution/junit?
proj ect Key=$(proj ect _key)"

(D We're using "curl" utility that comes in Unix based OS'es but you can easily use another tool to make the HTTP request; however, "curl" is
provided in the container used by Azure DevOps.

We may now run the Pipeline build...

l,‘J Azure DevOps sergiofreire / DEMO2 / Pipelines / Builds / DEMO2 / #20190418.9 P search]
B oevoz 4
O #20190418.9: Update azure-pipelines.yml for Azure Pipelines & Release L Alllogs
ﬂ Overview Manually run thu at 18:04 by Sérgio Freire 4 DEMO2 {° master ¢ 22cdc72
% Boards Logs Summary Tests
P
REERS Job Job Started: 18/04/2019, 18:07:09
Pool: Hosted Ubuntu 1604 - Agent: Hosted Agent <0 2m 24s
f Pipelines
& Builds @ Preparejob - succeeded <Is
& Releases @ Initialize job - succeeded 1s
I Library @ Checkout - succeeded 5s
= TeEkEES @ Maven - succeeded 2m 14s
“* Deployment groups @ Bash - succeeded 2s
@ Post-job: Checkout - succeeded] <1s
A Test Plans
@ Finalize Job - succeeded <1s
B Artifacts
@ Report build status - succeeded <

After results are imported, you can check them in Xray.

Calculator / CALC-1967

Execution results - TEST-com.xpand.java.CalcTest.xml - [1555607373453]

& Edit Q Comment Assign More v Close Issue Reopen Issue Admin v
Overall Execution Status
PASS
Total Tests: 4
Vv FILTERS
Test Set Assignee Status Component Search
All v Al N ~ || Contains X Clear
Show 10 entries Columns ~
Key Summary Test Type #Req #Def Test Sets Assignee Status
— CALC- . Xpand
1 1203 CanDoStuff Generic 0 0 IT Admin
CALC- . . Xpand
2 1204 CanMultiply Generic 0 0 IT Admin
CALC- . Xpand
3 1205 CanSubtract Generic 0 0 IT Admin
CALC- . Xpand
4 1202 CanAddNumbers ~ Generic 1 0 IT Admin

Using Azure DevOps to store code and Jenkins to manage the builds

v Dates
Created:
Updated:
Resolved:
Begin Date:
End Date:

v Agile

View on Board

This scenario explores usage of the Repos facility from Azure DevOps to store the code and uses Jenkins as the build tool.

JUnit example

This recipe could also be applied for other frameworks such as NUnit, TestNG or Robot.

The source code is stored and managed by Repos component of Azure DevOps.

Similarly to configuring any SCVS (e.g. Git, SVN, CVS), we need to configure Jenkins to checkout the code from Azure DevOps' Repos.

Jenkins

java-junit-calc_azure-devops

General

Source Code Management

None

O Git

Repositories

Source Code Management

Build Trigg Build Environment Build

Repository URL https://dev.azure.com/sergiofreire/DEMO/_git/DEMO

Credentials

Branches to build

Branch Specifier (blank for 'any')

sergio.freire@xpand-it.com/****** § &= Ade

*Imaster

Post-build Actions

Advanced...

Add Repository

Add Branch

Just now
Just now
Just now
Just now

Just now

@

Please check the URL of your repository in Azure DevOps; it should be something similar to:

https://dev. azure. cont {orgNanme}/ {proj ect Nane}/ _gi t/{project Nane}

Next, you can configure the remaining build process, including the build steps, in Jenkins as usual; thus, you can see the results back in Jira and Xray ‘<

Jenkins java-junit-calc_azure-devops
General Source Code Management Build Triggers Build Environment Build Post-build Actions

Xray: Results Import Task

«

JIRA Instance xray-vm

Format JUnit XML

«

Parameters
Import to Same Test Execution

When this option is check, if you are importing multiple execution
report files using a glob expression, the results will be imported to
the same Test Execution

Execution Report File (file path with file name) java-junit-calc/target/surefire-reports/*.xml
Project Key CALC

Test Execution Key

Test Plan Key

Test Environments

Revision

Fix Version v3.0

Click here for more details

Triggering automation from Xray side

Please have a look at Integration with Automation for Jira to see some examples of how automation can be triggered from Xray side.

References

https://docs.microsoft.com/en-us/azure/devops/index?view=azure-devops&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema?view=azure-devops&tabs=schema
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/test/publish-test-results?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/integrate-jenkins-pipelines-cicd ?view=azure-devops&tabs=yami
https://docs.microsoft.com/en-us/azure/devops/service-hooks/services/jenkins?view=azure-devops
https://docs.microsoft.com/pt-pt/azure/devops/pipelines/languages/dotnet-core?view=azure-devops#run-your-tests
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/test/vstest?view=azure-devops

https://docs.getxray.app/display/XRAY/Integration+with+Automation+for+Jira
https://docs.microsoft.com/en-us/azure/devops/index?view=azure-devops&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema?view=azure-devops&tabs=schema
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/test/publish-test-results?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/integrate-jenkins-pipelines-cicd?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/service-hooks/services/jenkins?view=azure-devops
https://docs.microsoft.com/pt-pt/azure/devops/pipelines/languages/dotnet-core?view=azure-devops#run-your-tests
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/test/vstest?view=azure-devops

	Integration with Azure DevOps

