
Testing Android apps using Espresso in Java or Kotlin
Overview
In this tutorial, we will "create" some UI tests for an Android application using testing library.Espresso

Tests can be written either in Java or Kotlin.

Requirements
gradle 5.6
Android SDK (e.g. v28)
JDK
(optional) Android Studio

Description
For this tutorial, we'll use a provided by Google, with minor updates as tracked in .basic Espresso example project this fork

The Android application is quite simple: it contains two activities, where the main one as an input to change some text along with two buttons that will give
the possibility to change the text in the current activity of in a new one.

The code related to the previous activities can be found .here

The project contains 2 tests, implemented both in Java and in Kotlin (thus, overall 4 tests although 2 "duplicated").

Tests use the for UI-based tests. Espresso comes as part of Android SDK; a brief overview can be found .Espresso testing library here

Espresso provides ways of interacting with the UI and assertions that can be used to perform checks in your tests.

app/src/androidTest/java/com/example/android/testing/espresso/BasicSample/ChangeTextBehaviorTest.java

https://developer.android.com/training/testing/espresso
https://github.com/android/testing-samples/tree/master/ui/espresso/BasicSample
https://github.com/bitcoder/testing-samples/tree/master/ui/espresso/BasicSample
https://github.com/bitcoder/testing-samples/tree/master/ui/espresso/BasicSample/app/src/main/java/com/example/android/testing/espresso/BasicSample
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso/basics

/*
 * Copyright 2018, The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.example.android.testing.espresso.BasicSample

import androidx.test.ext.junit.rules.activityScenarioRule
import android.app.Activity
import androidx.test.core.app.ActivityScenario
import androidx.test.core.app.launchActivity
import androidx.test.espresso.Espresso.onView
import androidx.test.espresso.action.ViewActions
import androidx.test.espresso.action.ViewActions.*
import androidx.test.espresso.assertion.ViewAssertions.matches
import androidx.test.espresso.matcher.ViewMatchers
import androidx.test.espresso.matcher.ViewMatchers.withId
import androidx.test.espresso.matcher.ViewMatchers.withText
import androidx.test.ext.junit.runners.AndroidJUnit4
import androidx.test.filters.LargeTest
import org.junit.Before
import org.junit.Rule
import org.junit.Test
import org.junit.runner.RunWith

/**
 * The kotlin equivalent to the ChangeTextBehaviorTest, that
 * showcases simple view matchers and actions like [ViewMatchers.withId],
 * [ViewActions.click] and [ViewActions.typeText], and ActivityScenarioRule
 *
 *
 * Note that there is no need to tell Espresso that a view is in a different [Activity].
 */
@RunWith(AndroidJUnit4::class)
@LargeTest
class ChangeTextBehaviorKtTest {

 /**
 * Use [ActivityScenarioRule] to create and launch the activity under test before each test,
 * and close it after each test. This is a replacement for
 * [androidx.test.rule.ActivityTestRule].
 */
 @get:Rule var activityScenarioRule = activityScenarioRule<MainActivity>()

 @Test
 fun changeText_sameActivity() {

 // Type text and then press the button.
 onView(withId(R.id.editTextUserInput))
 .perform(typeText(STRING_TO_BE_TYPED), closeSoftKeyboard())
 onView(withId(R.id.changeTextBt)).perform(click())

 // Check that the text was changed.
 onView(withId(R.id.textToBeChanged)).check(matches(withText(STRING_TO_BE_TYPED)))
 }

 @Test
 fun changeText_newActivity() {
 // Type text and then press the button.

 onView(withId(R.id.editTextUserInput)).perform(typeText(STRING_TO_BE_TYPED),
 closeSoftKeyboard())
 onView(withId(R.id.activityChangeTextBtn)).perform(click())

 // This view is in a different Activity, no need to tell Espresso.
 onView(withId(R.id.show_text_view)).check(matches(withText(STRING_TO_BE_TYPED)))
 }

 companion object {

 val STRING_TO_BE_TYPED = "Espresso"
 }
}

app/src/androidTest/java/com/example/android/testing/espresso/BasicSample/ChangeTextBehaviorKtTest.java

/*
 * Copyright 2018, The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.example.android.testing.espresso.BasicSample

import androidx.test.ext.junit.rules.activityScenarioRule
import android.app.Activity
import androidx.test.core.app.ActivityScenario
import androidx.test.core.app.launchActivity
import androidx.test.espresso.Espresso.onView
import androidx.test.espresso.action.ViewActions
import androidx.test.espresso.action.ViewActions.*
import androidx.test.espresso.assertion.ViewAssertions.matches
import androidx.test.espresso.matcher.ViewMatchers
import androidx.test.espresso.matcher.ViewMatchers.withId
import androidx.test.espresso.matcher.ViewMatchers.withText
import androidx.test.ext.junit.runners.AndroidJUnit4
import androidx.test.filters.LargeTest
import org.junit.Before
import org.junit.Rule
import org.junit.Test
import org.junit.runner.RunWith

/**
 * The kotlin equivalent to the ChangeTextBehaviorTest, that
 * showcases simple view matchers and actions like [ViewMatchers.withId],
 * [ViewActions.click] and [ViewActions.typeText], and ActivityScenarioRule
 *
 *
 * Note that there is no need to tell Espresso that a view is in a different [Activity].
 */
@RunWith(AndroidJUnit4::class)
@LargeTest
class ChangeTextBehaviorKtTest {

 /**
 * Use [ActivityScenarioRule] to create and launch the activity under test before each test,
 * and close it after each test. This is a replacement for
 * [androidx.test.rule.ActivityTestRule].

 */
 @get:Rule var activityScenarioRule = activityScenarioRule<MainActivity>()

 @Test
 fun changeText_sameActivity() {

 // Type text and then press the button.
 onView(withId(R.id.editTextUserInput))
 .perform(typeText(STRING_TO_BE_TYPED), closeSoftKeyboard())
 onView(withId(R.id.changeTextBt)).perform(click())

 // Check that the text was changed.
 onView(withId(R.id.textToBeChanged)).check(matches(withText(STRING_TO_BE_TYPED)))
 }

 @Test
 fun changeText_newActivity() {
 // Type text and then press the button.
 onView(withId(R.id.editTextUserInput)).perform(typeText(STRING_TO_BE_TYPED),
 closeSoftKeyboard())
 onView(withId(R.id.activityChangeTextBtn)).perform(click())

 // This view is in a different Activity, no need to tell Espresso.
 onView(withId(R.id.show_text_view)).check(matches(withText(STRING_TO_BE_TYPED)))
 }

 companion object {

 val STRING_TO_BE_TYPED = "Espresso"
 }
}

There are different types of tests: (i.e. unit tests that don't need a device/emulator) and instrumentation tests (which run on a devicelocal unit tests
/emulator).

Depending on which tests, checks and tasks you want to run, the syntax needs to be adapted accordingly; you may use " " (or "gradle gradle tasks gr
") to find out all available tasks.adlew tasks

Thus, you'll find using the command line.multiple ways of running the tests

For local unit tests, you may use:

./gradlew check

./gradlew test
gradle clean cleanTest test

In this case, test results will be stored as multiple JUnit XML files in build/test-results.

For instrumentation tests, you may use:

./gradlew connectedAndroidTest

./gradlew app:connectedCheck

In this case, test results will be stored as one JUnit XML file in a directory similar to build/outputs/<xxxx>-results/connected.

To run the tests during CI, we can invoke . gradle/gradlew

If you're using Android Studio, then you .can also use it to write and run your tests

However, if you decide to export the results to an XML file, that format is not a JUnit XML compatible one in is thus not supported.manually

https://developer.android.com/training/testing/unit-testing/local-unit-tests
https://developer.android.com/studio/test/command-line
https://developer.android.com/studio/test

run the tests in the installed app
./gradlew app:connectedCheck
...or... install app and run the tests
#./gradlew connectedAndroidTest

After running the tests and generating the JUnit XML report(s) (e.g.,), it can be imported to Xray (either by the TEST-Pixel_XL_API_29(AVD) - 10-app-.xml
REST API or by using one of the CI plugins or through action within the Test Execution).Import Execution Results

curl -H "Content-Type: multipart/form-data" -u admin:admin -F "file=@app/build/outputs/androidTest-results
/connected/TEST-Pixel_XL_API_29\(AVD\)\ -\ 10-app-.xml" http://jiraserver.example.com/rest/raven/1.0/import
/execution/junit?projectKey=CALC

A Test Execution will be created containing information about the executed scenarios.

Please note

You may start an emulator from within Android Studio (Tools => AVD Manager).

You may also , for example:use the command line

emulator -avd Pixel_XL_API_29

If you need to find out the name of the AVD, you may use:

emulator -list-avds

https://docs.getxray.app/download/attachments/111150004/TEST-Pixel_XL_API_29%28AVD%29%20-%2010-app-.xml?version=1&modificationDate=1679153767390&api=v2
https://developer.android.com/studio/run/emulator-commandline

Each test is mapped to a Generic Test in Jira, and the field contains the name of the class concatenated with the method name of Generic Test Definition
the corresponding automated test.

The Execution Details of the Generic Test contains information about the "Test Suite" (as per JUnit format), which in this case corresponds to the first test
full classpath.

Notes

You can also import local unit tests. Note that you'll have a JUnit XML file per test class. You may use utility in case you want to merge all junit-merge
these reports to a single JUnit XML report.

References
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso/additional-resources
https://developer.android.com/training/testing
https://developer.android.com/training/testing/ui-testing/index.html
https://developer.android.com/studio/test
https://developer.android.com/kotlin

https://www.npmjs.com/package/junit-merge
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso/additional-resources
https://developer.android.com/training/testing
https://developer.android.com/training/testing/ui-testing/index.html
https://developer.android.com/studio/test
https://developer.android.com/kotlin

	Testing Android apps using Espresso in Java or Kotlin

