Testing web applications using Cypress

Owdnaieywou'll learn
Prerequisites
* |ntegrathgDefin&tegts using Cypress
o ®ARLN the test and push the test report to Xray
* ValiomtedimRiatiteidhe test results are available
= JUnit XML results
° Jira Ul
® Tips
® References
Source-code for this tutorial

® code is available in GitHub

Overview

Cypress is a JavaScript based testing framework for test automation. Cypress is often compared to
Selenium, but it is different; unlike Selenium that is executed outside of the browser Cypress is executed
within it, in the same run loop as your application.

Cypress runs in a NodeJS server process that allows Cypress and the NodeJS server to constantly
communicate, synchronize, and perform tasks on behalf of each other. This provides Cypress the ability

to respond to the application's events in real time, and at the same time work outside of the browser for
tasks that require a higher privilege.

@ Cypress and Cucumber

If you're using Cypress and Cucumber (i.e. using Gherkin test scenarios), please see the
tutorial Testing using Cypress and Cucumber in JavaScript instead.

Prerequisites

For this example we will use Cypress to write tests that aim to validate the Cypress todo example.
We will need:

® Access to a Cypress todo example site that we aim to test
® Cypress installed in your machine

To start using the Cypress please follow the Get Started documentation.

The tests consists in validating the operations over todo's elements of the Cypress todo example, for that
we have defined several tests to:

® Validate that we can add new todo items;

® Validate that we can check an item as completed;

® Validate that we can filter for completed/uncompleted tasks;
® Validate that we can delete all completed tasks.

The target web application is a simple "todos" made available by Cypress.

https://www.cypress.io/
https://github.com/microsoft/playwright-test/blob/master/README.md
https://example.cypress.io/todo
https://example.cypress.io/todo
https://www.cypress.io/
https://www.cypress.io/
https://docs.cypress.io/guides/getting-started/installing-cypress
https://example.cypress.io/todo
https://github.com/Xray-App/tutorial-js-cypress
https://docs.getxray.app/display/XRAYCLOUD/Testing+using+Cypress+and+Cucumber+in+JavaScript

todos

Pay electric bill

Walk the dog

2 itemns left Al Active Complated

TodoMVC

Each of these tests will have a series of actions and validations to check that the desired behavior is
happening as we can see below:

todo.cy.js

descri be(' exanple to-do app', () => {
bef oreEach(() => {
cy.visit(Cypress.config(' baseUl"))

b

it('can add new todo itens', () => {
const newitem = ' Feed the cat’
cy.get('[data-test=newtodo]').type(${newitent{enter}")

cy.get('.todo-list Ii")
.shoul d(' have.l ength', 3)
.last()

.shoul d(' have.text', newltem

9]
it('can check an itemas conpleted , () => {
cy.contains('Pay electric bill")
. parent ()
.find("input[type=checkbox]")
. check()
cy.contains('Pay electric bill")
.parents('li")
.shoul d(' have. cl ass', 'conpleted')
9]

context('with a checked task', () => {
bef oreEach(() => {

cy.contains('Pay electric bill")
. parent ()
.find('input[type=checkbox]")
. check()
b

it('can filter for unconpleted tasks', () => {
cy.contains(' Active').click()

cy.get('.todo-list li")
.shoul d(' have.length', 1)
first()

.shoul d(' have.text', 'Walk the dog')

cy.contains('Pay electric bill").should('not.exist")

1}

it('can filter for conpleted tasks', () => {
cy.contains(' Conpleted).click()

cy.get('.todo-list li")
.shoul d(' have.length', 1)
first()
.shoul d(' have.text', 'Pay electric bill")

cy.contains('Wal k the dog').shoul d(' not.exist")
b

it('can delete all conpleted tasks', () => {
cy.contains('Cear conpleted).click()

cy.get('.todo-list li")
.shoul d(' have.l ength', 1)
.shoul d(' not. have.text', 'Pay electric bill")

cy.contains(' Clear conpleted').should('not.exist')
1}
b
19

The tests are simple but let's look into two diferences that allow a little more control, the first one is the
possibility to use hooks like bef or eEach to, as the name implies, execute some operations before each
test execution. In this example we are accessing the target page before each test avoiding repeating this
instruction in each test.

beforeEach

bef oreEach(() => {
cy.visit('https://exanple.cypress.io/todo')
}

The other one helps in the test organization and have a direct effect on how the results will be written in
the result file, in our case we are using cont ext (but we could use descri be or speci fy). This will
group the tests beneath into the same testsuite.

context

context('with a checked task', () =>{

These tests are defined to validate the application ability to manage todo's by accessing the Cypress
todo example and performing operations that will generate an expected output.

Once the code is implemented it can be executed with the following command:

npx cypress run

The results are immediately available in the terminal.

cypress/e2e/*

Running: todo.cy. js

(Results)

(Run_Finished)

+ todo.cy.js

v ALL sp P

In this example, all tests have succeed, as seen in the previous terminal screenshot. It generates the
following JUnit XML report.

https://example.cypress.io/todo
https://example.cypress.io/todo

Junit Report

<?xm version="1.0" encodi ng="UTF-8"?>
<t estsuites name="Mcha Tests" tine="4.404" tests="6" failures="0">
<testsuite name="Root Suite" tinestanp="2023-01-30T17:46:57" tests="0"
file="cypress/e2e/todo.cy.js" tine="0.000" failures="0">
</testsuite>
<t estsuite nane="exanpl e to-do app" tinestanp="2023-01-30T17: 46: 57"
tests="3" tinme="0.000" failures="0">
<t estcase nane="exanpl e to-do app displays two todo itens by default"”
time="0.842" classnane="di splays two todo itens by default">
</testcase>
<t estcase nane="exanpl e to-do app can add new todo itens" tinme="0.477"
cl assnane="can add new todo itens">
</testcase>
<t est case nane="exanpl e to-do app can check off an item as conpl eted"
time="0.267" classnane="can check off an item as conpleted">
</testcase>
</testsuite>
<testsuite name="with a checked task" timestanp="2023-01-30T17: 47: 00"
tests="3" tinme="1.060" failures="0">
<t est case nane="exanple to-do app with a checked task can filter for
unconpl et ed tasks" time="0.345" classnane="can filter for unconpleted
tasks" >
</testcase>
<testcase nane="exanple to-do app with a checked task can filter for
conpl eted tasks" time="0.350" classnanme="can filter for conpleted tasks">
</testcase>
<testcase nane="exanpl e to-do app with a checked task can delete al
conpl eted tasks" time="0.341" classnane="can delete all conpleted tasks">
</testcase>
</testsuite>
</testsuites>

Notes:

® You can invoke Cypress locally and use it to assist you to write and execute tests with: npx
cypress open

® Use cypress. config.j s todefine configuration values such as taking screenshots,
recordings or the reporter to use (more info here).

® Different parameters can be used in the command line (more info here)

® We are using JUnit reporter but others are available (more info here)

Integrating with Xray

As we saw in the previous example, where we are producing JUnit reports with the test results. It is now
a matter of importing those results to your Jira instance; this can be done by simply submitting
automation results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for
Jenkins), or using the Jira interface to do so.

API

API

Once you have the report file available you can upload it to Xray through a request to the REST API
endpoint for JUnit, and for that the first step is to follow the instructions in v1 or v2 (depending on your
usage) to obtain the token we will be using in the subsequent requests.

https://docs.cypress.io/guides/references/configuration
https://docs.cypress.io/guides/guides/command-line
https://docs.cypress.io/guides/tooling/reporters
https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST+v2

Authentication

The request made will look like:

curl -H "Content-Type: application/json" -X POST --data '{ "client_id":
"CLIENTID', "client_secret": "CLIENTSECRET" }' https://xray.cloud.getxray.
app/ api / v2/ aut henti cat e

The response of this request will return the token to be used in the subsequent requests for
authentication purposes.

JUnit XML results

Once you have the token we will use it in the API request with the definition of some common fields on
the Test Execution, such as the target project, project version, etc.

curl -H "Content-Type: text/xm "™ -X POST -H "Authorization: Bearer
$token" --data @todo-results.xm " https://xray.cloud. getxray.app/api/v2
/i nport/execution/junit?projectKey=XT&t est Pl anKey=XT- 601

With this command we are creating a new Test Execution in the referred Test Plan with a generic
summary and six tests with a summary based on the test name.

Projects / §J Xray Tutorials | & XT-601
tutorial-js-cypress

@ Atach B Createsubtask (D Linkissue v § Tests

Description

Add a description.

Tests
D Tost Exccuions
Add Tests v Create Test Execution v View on board
Overall Execution Status Al Enveonments, il satus v
PassED ToTALTESTS: 6
B~ OwMylses e « 0 v coums
xr-
% exampleto-do app dispays two todotems by defaut 1 Generc [PASSED
xr-
604 ‘example to-do app can add new todo items 1 Generic PASSED
xr-
KT oxampleto-do app an check oft an tm s comple 1 Generc [l PASSED
xr-
606 ‘example to-do app with a checked task can filter for. 1 Generic PASSED
xr
X example to-d app with checked task canfiter or. 1 Generc [PASSED
xr-
KT oxampo to-do app withachecked task can delte 1 Generc [PASSED

Jira Ul

Jira Ul

Create a Test Execution linked to the Test Plan that you have.

Projects / [Xray Tutorials / & XT-601

tutorial-js-cypress

View on board

All Environments, final status v

@ Attach @) Createsubtask @ Linkissue v § Tests eee
Description
Add a description.
Tests
0 st Excutons
Overall Execut Alltests...
R with status...
6 PASSED
® v OnyMylssues Fiers v
Key Summary Assignee #Test
Executions
‘example to-do app displays two todo items by default 1
o X
O §oq ©xample to-do app can add new todo items 1
XT- i
) Go5 ©xample to-do app can check off an item as comple... 1
xT-
) gog ©xample to-do app with a checked task can flter for.. 1
o oxT-
) goy xample to-do app with a checked task can fite for... 1

Dataset

Fill in the necessary fields and press "Create"

Create planned Test Execution

Project
Xray Tutorials
Summry*
Test Execution for Tt Plan XT-601
Assignes
Cristiano Cunha v
Choose a usertossignhe Test Exeution
Fix Versonls
Select v
Test Environment

Select v

GO to Test Execution

TOTAL TESTS: 6

10 v Coumns v

Test LatestStatus
Type

Generic [} PASSED
Generic [} PASSED
Generic [I] PASSED
Generic [} PASSED

Generic [} PASSED

Open the Test Execution and import the JUnit XML report.

Prects | 0 ooy Totoriss | @ X609

Test Execution for Test Plan XT-601

@ Dcseubusk Plnkisme | -

Qe

Overal Execution Status

Grove Tomrsra-e
sy

Y . J—— e

Choose the results file and press "Import"

« o o <@

wogmen
@ e o
@ i - it e
L o X st
3 crese X0 -ocumentSenratr
G e Mo
senxpen 7
s
Pe——
r—
e
Tan o

Import Execution Results

Choose file | No file chosen
The file Wnn results for the Test Execution.

The Test Execution is now updated with the test results imported.

Projects / [Xray Tutorials / @ XT-609

Test Execution for Test Plan XT-601
@ Attach Create subtask (D Linkissue v [Tests

Description

Add a description...

Tests

AddTests v View on board

Overall Execution Status

® -« OnyMyTestRuns Fiters v 10 v Coumns v
Rank: Key Summary Test Dataset #Defects Status Actions
Type
O 1 XT- example to-do app displays two todo tems by default Generic o W eassen E
603
O 2 XT- example to-do app can add new todo items Generic o [0 passep Eir)
604
) 3 XT- example to-do app can check off a item as comple... Generic 0 [PasseD =0
605
O 4 XxT- example to-do app with a checked task can filter for... Generic 0 W Passep
606
O 5 XT- example to-do app with a checked task can filter for.. Generic o [Passep =0
607
O 6 XT- example to-do app with a checked task can delete a... Generic 3 1) easseo =

Tests implemented using Cypress will have a corresponding Test entity in Xray. Once results are
uploaded, Test issues corresponding to the Cypress tests are auto-provisioned, unless they already
exist.

Projects / (3 Xray Tutorials | @ XT-603
example to-do app displays two todo items by default
@ nttach Crestesubtask D Linkissue v % Testdetails

Description

Add a description.

Test details
B Procondtons @ Tostsets B Testplans @ TostFuns

Test Repository
Test Type

Generlc v

Definition

displays two todo items by defaut.example to-do app displays two todo items by default

Xray uses a concatenation of the suite name and the test name as the the unique identifier for the test.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed using Cypress.

Projects / [Xray Tutorials / O XT-609
Test Execution for Test Plan XT-601
@ Avach Create subtask D Linkissue v [Tests

Description

Add a description...

Tests

AddTests ~ View on board

Overall Execution Status

® v OnyMyTestRuns Fillers v 10 v Columns v
Rank= ey~ Summary Test Dataset #Defects: Status Actions
Type
o XT- example to-do app displays two todo items by default Generic 0 W passep 0
603
O 2 XT- example to-do app can add new todo items Generic o [PassED 0
604
O 3 XT- example to-do app can check off an item as comple... Generic o 1 PasseD Eil
605
0 a XT- example to-do app with a checked task can filter for... Generic 0 I passep 20
606
O 5 XT- example to-do app with a checked task can fiter for... Generic o 10 passep Ei)
607

Detailed results, including logs and exceptions reported during execution of the test, can be seen on the
execution screen details of each Test Run, accessible through the Execution details:

Projects / [Xray Tutorials /| [XT-609
Test Execution for Test Plan XT-601
& Atach Createsubtask D Linkissue | v [Tests

Description

Add a description.

Tests

Add Tests v View on board

Overall Execution Status

Bensseo o tests:s
® -« OnyMyTestRuns Fiters v 10 v Golmns v
Rank: Key~ Summary Test Dataset #Defects Status Actions
Type
[=N] XT- example to-do app displays two todo items by default ~ Generic: o W passep g0 o
603
o 2 XT- example to-do app can add new todo items Generic 0 W passep El
604
o s XT- example to-do app can check off an item as comple... Generic. 0 W passeD El
605
[XT- example to-do app with a checked task can filter for... Generic. 0 W PasseD El
606
) 5 XT- example to-do app with a checked task can filter for... Generic o [PasseD =0
607

As we can see here:

example to-do app displays two todo items by defauit @ oo

» inaings ©

Test details €I

- bstinition
© Resuis @

Tesrsne s 4000 saars TS
+ nctiy

Tips

® after results are imported, in Jira Tests can be linked to existing requirements/user stories, so
you can track the impacts on their coverage.

® results from multiple builds can be linked to an existing Test Plan, to facilitate the analysis of
test result trends across builds.

® results can be associated with a Test Environment, in case you want to analyze coverage and
test results by that environment later on. A Test Environment can be a testing stage (e.g. dev,
staging, preprod, prod) or a identifier of the device/application used to interact with the system
(e.g. browser, mobile OS).

References

® https://lwww.cypress.io/
® https://docs.cypress.io/guides/overview/why-cypress

https://www.cypress.io/
https://docs.cypress.io/guides/overview/why-cypress

	Testing web applications using Cypress

