
Testing web applications using Cypress

Overview
Cypress is a JavaScript based testing framework for test automation. Cypress is often compared to
Selenium, but it is different; unlike Selenium that is executed outside of the browser Cypress is executed
within it, in the same run loop as your application.

Cypress runs in a NodeJS server process that allows Cypress and the NodeJS server to constantly
communicate, synchronize, and perform tasks on behalf of each other. This provides Cypress the ability
to respond to the application's events in real time, and at the same time work outside of the browser for
tasks that require a higher privilege.

Prerequisites

For this example we will use to write tests that aim to validate the .Cypress Cypress todo example

We will need:

Access to a site that we aim to testCypress todo example
Cypress installed in your machine

To start using the please follow the documentation.Cypress Get Started

The tests consists in validating the operations over todo's elements of the , for that Cypress todo example
we have defined several tests to:

Validate that we can add new todo items;
Validate that we can check an item as completed;
Validate that we can filter for completed/uncompleted tasks;
Validate that we can delete all completed tasks.

The target web application is a simple "todos" made available by Cypress.

What you'll learn

Define tests using Cypress
Run the test and push the test report to Xray
Validate in Jira that the test results are available

Source-code for this tutorial

code is available in GitHub

Cypress and Cucumber

If you're using Cypress and Cucumber (i.e. using Gherkin test scenarios), please see the
tutorial instead.Testing using Cypress and Cucumber in JavaScript

Overview
Prerequisites
Integrating with Xray

API
Authentication
JUnit XML results

Jira UI
Tips
References

https://www.cypress.io/
https://github.com/microsoft/playwright-test/blob/master/README.md
https://example.cypress.io/todo
https://example.cypress.io/todo
https://www.cypress.io/
https://www.cypress.io/
https://docs.cypress.io/guides/getting-started/installing-cypress
https://example.cypress.io/todo
https://github.com/Xray-App/tutorial-js-cypress
https://docs.getxray.app/display/XRAYCLOUD/Testing+using+Cypress+and+Cucumber+in+JavaScript

Each of these tests will have a series of actions and validations to check that the desired behavior is
happening as we can see below:

todo.cy.js

describe('example to-do app', () => {
 beforeEach(() => {
 cy.visit(Cypress.config('baseUrl'))
 })

 it('can add new todo items', () => {
 const newItem = 'Feed the cat'
 cy.get('[data-test=new-todo]').type(`${newItem}{enter}`)

 cy.get('.todo-list li')
 .should('have.length', 3)
 .last()
 .should('have.text', newItem)
 })

 it('can check an item as completed', () => {
 cy.contains('Pay electric bill')
 .parent()
 .find('input[type=checkbox]')
 .check()

 cy.contains('Pay electric bill')
 .parents('li')
 .should('have.class', 'completed')
 })

 context('with a checked task', () => {
 beforeEach(() => {
 cy.contains('Pay electric bill')
 .parent()
 .find('input[type=checkbox]')
 .check()
 })

 it('can filter for uncompleted tasks', () => {
 cy.contains('Active').click()

 cy.get('.todo-list li')
 .should('have.length', 1)
 .first()
 .should('have.text', 'Walk the dog')

 cy.contains('Pay electric bill').should('not.exist')
 })

 it('can filter for completed tasks', () => {
 cy.contains('Completed').click()

 cy.get('.todo-list li')
 .should('have.length', 1)
 .first()
 .should('have.text', 'Pay electric bill')

 cy.contains('Walk the dog').should('not.exist')
 })

 it('can delete all completed tasks', () => {
 cy.contains('Clear completed').click()

 cy.get('.todo-list li')
 .should('have.length', 1)
 .should('not.have.text', 'Pay electric bill')

 cy.contains('Clear completed').should('not.exist')
 })
 })
})

The tests are simple but let's look into two diferences that allow a little more control, the first one is the
possibility to use hooks like to, as the name implies, execute some operations before each beforeEach
test execution. In this example we are accessing the target page before each test avoiding repeating this
instruction in each test.

beforeEach

...
beforeEach(() => {
 cy.visit('https://example.cypress.io/todo')
})
...

The other one helps in the test organization and have a direct effect on how the results will be written in
the result file, in our case we are using (but we could use or). This will context describe specify
group the tests beneath into the same testsuite.

context

...
 context('with a checked task', () => {
...

These tests are defined to validate the application ability to manage todo's by accessing the Cypress
 and performing operations that will generate an expected output.todo example

Once the code is implemented it can be executed with the following command:

npx cypress run

The results are immediately available in the terminal.

In this example, all tests have succeed, as seen in the previous terminal screenshot. It generates the
following JUnit XML report.

https://example.cypress.io/todo
https://example.cypress.io/todo

Junit Report

<?xml version="1.0" encoding="UTF-8"?>
<testsuites name="Mocha Tests" time="4.404" tests="6" failures="0">
 <testsuite name="Root Suite" timestamp="2023-01-30T17:46:57" tests="0"
file="cypress/e2e/todo.cy.js" time="0.000" failures="0">
 </testsuite>
 <testsuite name="example to-do app" timestamp="2023-01-30T17:46:57"
tests="3" time="0.000" failures="0">
 <testcase name="example to-do app displays two todo items by default"
time="0.842" classname="displays two todo items by default">
 </testcase>
 <testcase name="example to-do app can add new todo items" time="0.477"
classname="can add new todo items">
 </testcase>
 <testcase name="example to-do app can check off an item as completed"
time="0.267" classname="can check off an item as completed">
 </testcase>
 </testsuite>
 <testsuite name="with a checked task" timestamp="2023-01-30T17:47:00"
tests="3" time="1.060" failures="0">
 <testcase name="example to-do app with a checked task can filter for
uncompleted tasks" time="0.345" classname="can filter for uncompleted
tasks">
 </testcase>
 <testcase name="example to-do app with a checked task can filter for
completed tasks" time="0.350" classname="can filter for completed tasks">
 </testcase>
 <testcase name="example to-do app with a checked task can delete all
completed tasks" time="0.341" classname="can delete all completed tasks">
 </testcase>
 </testsuite>
</testsuites>

Notes:

You can invoke Cypress locally and use it to assist you to write and execute tests with: npx
cypress open
Use to define configuration values such as taking screenshots, cypress.config.js
recordings or the reporter to use (more info).here
Different parameters can be used in the command line (more info)here
We are using JUnit reporter but others are available (more info)here

Integrating with Xray
As we saw in the previous example, where we are producing JUnit reports with the test results. It is now
a matter of importing those results to your Jira instance; this can be done by simply submitting
automation results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for
Jenkins), or using the Jira interface to do so.

API

API

Once you have the report file available you can upload it to Xray through a request to the REST API
, and for that the first step is to follow the instructions in or (depending on your endpoint for JUnit v1 v2

usage) to obtain the token we will be using in the subsequent requests.

https://docs.cypress.io/guides/references/configuration
https://docs.cypress.io/guides/guides/command-line
https://docs.cypress.io/guides/tooling/reporters
https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST+v2

1

Authentication

The request made will look like:

curl -H "Content-Type: application/json" -X POST --data '{ "client_id":
"CLIENTID","client_secret": "CLIENTSECRET" }' https://xray.cloud.getxray.
app/api/v2/authenticate

The response of this request will return the token to be used in the subsequent requests for
authentication purposes.

JUnit XML results

Once you have the token we will use it in the API request with the definition of some common fields on
the Test Execution, such as the target project, project version, etc.

curl -H "Content-Type: text/xml" -X POST -H "Authorization: Bearer
$token" --data @"todo-results.xml" https://xray.cloud.getxray.app/api/v2
/import/execution/junit?projectKey=XT&testPlanKey=XT-601

With this command we are creating a new Test Execution in the referred Test Plan with a generic
summary and six tests with a summary based on the test name.

Jira UI

Jira UI

Create a Test Execution linked to the Test Plan that you have.

4

3

2 Fill in the necessary fields and press " "Create

Open the Test Execution and import the JUnit XML report.

Choose the results file and press "Import"

5 The Test Execution is now updated with the test results imported.

Tests implemented using Cypress will have a corresponding Test entity in Xray. Once results are
uploaded, Test issues corresponding to the Cypress tests are auto-provisioned, unless they already
exist.

Xray uses a concatenation of the suite name and the test name as the the unique identifier for the test.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed using Cypress.

Detailed results, including logs and exceptions reported during execution of the test, can be seen on the
execution screen details of each Test Run, accessible through the :Execution details

As we can see here:

Tips
after results are imported, in Jira Tests can be linked to existing requirements/user stories, so
you can track the impacts on their coverage.
results from multiple builds can be linked to an existing Test Plan, to facilitate the analysis of
test result trends across builds.
results can be associated with a Test Environment, in case you want to analyze coverage and
test results by that environment later on. A Test Environment can be a testing stage (e.g. dev,
staging, preprod, prod) or a identifier of the device/application used to interact with the system
(e.g. browser, mobile OS).

References
https://www.cypress.io/
https://docs.cypress.io/guides/overview/why-cypress

https://www.cypress.io/
https://docs.cypress.io/guides/overview/why-cypress

	Testing web applications using Cypress

