Testing using Robot Framework integration in Python or
Java

® Overview
® Common requirements
® Examples
© The full ATDD workflow
= Attaching screenshots
© Running tests in parallel, against different environments
® Tracking automation results
© On the user story issue screen
© On the Agile Board
© On the Test Plan
* References

Overview

Robot Framework is a tool used by teams adopting ATDD (Acceptance Test Driven Development).

Broadly speaking, it can be used to automate acceptance “test cases” (i.e. scripts) no matter the moment you decide to do so or the practices your team
follows even though it's preferable to do it at the start, involving the whole team in order to pursue shared understanding.

In this article, we will specify some tests using Robot Framework and see how we can have visibility of the corresponding results in Jira, using Xray.

This tutorial explores the specific integration Xray provides for Robot Framework XML reports.

Common requirements

® Robot Framework
® SeleniumLibrary
® Java (if using the Java variant of the "Robot Framework")

Examples

The full ATDD workflow

In this example we're going to validate a dummy website (provided in the GitHub repository), checking for valid and invalid logins.

G) You may find the full source for this example in this GitHub repository, which corresponds in essence to previous work by Pekka Klarck from the
Robot Framework Foundation.

If the team is adopting ATDD and working collaboratively in order to have a shared understanding of what is going to be developed, why and some
concrete examples of usage, then the flow would be something similar to the following diagram.

https://www.slideshare.net/pekkaklarck/atdd-using-robot-framework
http://testobsessed.com/2008/12/acceptance-test-driven-development-atdd-an-overview/
http://robotframework.org/
https://docs.getxray.app/display/XRAY700/Taking+advantage+of+Robot+XML+reports
https://github.com/bitcoder/WebDemo
https://github.com/bitcoder/WebDemo

Xray +Jira Some IDE Cl tool @ Robot Framework
! (e.g. PyCharm, RIDE)
1

1. Define story

2. Write automated
Test cases

3. Commit to
Git/SVN

4. Execute Tests

5. Process results &
build report

All starts with a user story or some sort of “requirement” that you wish to validate. This is materialized as a Jira issue and identified by the corresponding
issue key (e.g. ROB-11).

4"‘ Robot / ROB-11
48 As auser, | can login the web application

Edit Q Comment Assign More v Start Progress Resolve Issue Close Issue Admin v
v Details
Type: B story Status: T3 (view Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Labels: None
Sprint: Robot Sprint 1

» Description

v Test Coverage

No Tests were found testing the requirement.

We can promptly check that it is “UNCOVERED?” (i.e. that it has no tests covering it, no matter their type/approach).

A Test Plan can be created to define the scope of the testing that we aim to perform, group, and consolidate the corresponding results. Besides the user
story, we may also add the Test Plan to the Board and assign it explicitly to a sprint. This will increase visibility of testing progress and help closing the gap
between dev<>testers.

. Robot / ROB-12
@ automated Ul tests (RF)

Edit Q Comment Trigger Jenkins Build ... ~ More v Stop Progress Resolve Issue Close Issue Admin v
v Details
Type [Test Plan Status: (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s None Fix Version/s: None
Labels: None

> Description

v Tests

Pan e

This test plan is not associated with tests yet

v Test Executions

Add Test Executions

This test plan is not associated with test executions yet.

@ JiraSoftware Dashboards v Projects ¥ Issues v Boards ¥ Structure ¥ DbConsole eazyBl Tests v | Greate

E Robot webinar s remaining Complete Sprint Board v .
Robot Sprint 1
m
QUICKFILTERS: Only My Issues Recently Updated
000 INPROGRESS oonE
m
& ROB-11 ROB-12
As a user, | can login the web application automated Ul tests (RF)
[E]
[____uncovereo 1} No tests
2 @g= B2

A tester/SDET could simply focus on implementing the automated test cases:

The tester would write one or more test suites and corresponding test cases, using his/her favorite tool/IDE

Each test case could be linked to the corresponding requirement/user story in Jira by adding its key as a tag

Tests could then be run locally, or from the CI pipeline

Unique, non-duplicating, Test entities would be auto-provisioned in Xray, corresponding to each test case; tester could also, optionally, enforce
the result to an existing Test entity by specifying its issue key as a tag

Let’s take the following .robot file as an example, which acts as a suite containing one test case.

login_tests/valid_login.robot

*** Settings ***
Docunent ati on A test suite with a single test for valid |ogin.

This test has a workflow that is created using keywords in
the inported resource file.
Resour ce resource. robot

*** Test Cases ***

Valid Login
[Tags] ROB-11 U
Open Browser To Login Page
I nput User nane denp
I nput Password node
Subnit Credentials
Wl come Page Shoul d Be Open
[Tear down] Cl ose Browser

The previous Robot file uses a common resource that contains some generic variables and some reusable "keywords" (i.e., steps).

login_tests/resource.robot

*** Settings ***
Docunent ati on A resource file with reusable keywords and vari abl es.

The system specific keywords created here form our own

domai n specific |anguage. They utilize keywords provided
by the inported Sel eniunLibrary.
Li brary Sel eni unii brary run_on_fail ure=Capture Page Screenshot
screenshot _r oot _di rect or y=EMBED

*** Variabl es ***

${ SERVER} 192. 168. 56. 1: 7272

${ BRONBER} Fi r ef ox

${ DELAY} 0

${ VALI D USER} deno

${ VALI D PASSWORD} node

${LOG N URL} http: // ${ SERVER}/

${ WELCOME URL} htt p:// ${ SERVER}/ wel cone. ht mi
${ ERROR URL} http://${SERVER}/error. htm

* Kk Keymrds * k k
Open Browser To Logi n Page
Open Browser ${LOG N URL} ${ BRONSER}
Maxi m ze Browser W ndow
Set Sel eni um Speed ${ DELAY}
Logi n Page Should Be Open

Logi n Page Should Be Open
Title Should Be Logi n Page

Go To Login Page
Go To ${LOG N URL}
Logi n Page Should Be Open

I nput User nane
[Ar gunent s] ${ user nane}
I nput Text usernanme_field ${ user nane}

I nput Password
[Ar gumrent s] ${ passwor d}

I nput Text password_field ${ passwor d}

Subnmit Credentials
Click Button | ogi n_button

Wl come Page Shoul d Be Open

Location Shoul d Be ${ WVELCOME URL}
Title Should Be Wl cone Page

Running the tests can be done from the command line or from within Jenkins (or any other ClI tool); this will produce a XML based report (e.g. output.xml).

Build

Execute shell

Command robot --variable BROWSER:${BROWSER} --variable SERVER:${SERVER} login_tests

See the list of available environment variables

Advanced...

https://docs.getxray.app/download/attachments/111164533/output.xml?version=1&modificationDate=1682608907485&api=v2

Importing results is as easy as submitting them to the REST API with a POST request (e.g. curl), or by using one of the CI plugins available for free (e.g. Xr
ay Jenkins plugin).

Post-build Actions

Xray: Results Import Task

JIRA Instance xray-vm
Format Robot XML

Parameters
Import to Same Test Execution v

When this option is check, if you are importing multiple execution report files using a glob
expression, the results will be imported to the same Test Execution

Execution Report File (file path with file name) ' output.xml

Project Key ROB

Test Execution Key

Test Plan Key ROB-12

Test Environments

Revision ${BUILD_NUMBER}

Fix Version

@ Examples of running tests from the command line

Running tests is primarily done using the "robot" utility which provides many options that allow you to define which tests to run, the output
directory and more.

You may also specify some variables and their values.

Next follows some different usage examples.

If you're using Python:

robot -d output --variable BROASER Firefox |ogin_tests

If you're using Java:

java -jar robotframework-3.0.jar login_tests

An unstructured (i.e. "Generic") Test issue will be auto-provisioned the first time you import the results, based on the name of the test case and of the
corresponding test suites.

If you maintain the test case name and the respective test suites, the Test will be reused on subsequent result imports. You may always enforce the results
to be reported against an existing Test, if you wish so: just specify its issue key as a tag.

Tags can also be used to cover an existing requirement/user story (e.g. “ROB-11"): when a requirement issue key is given, a link between the test and the
requirement is created during the results import process.

Otherwise, tags are mapped as labels on the corresponding Test issue.

https://docs.getxray.app/display/XRAY700/Import+Execution+Results+-+REST
https://docs.getxray.app/display/XRAY700/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY700/Integration+with+Jenkins
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#id170

Robot / ROB-18

Valid Login

Edit Q Comment Assign More v Start Progress Resolve Issue Close Issue Admin v

v Details
Type: B Test Status: D (View Workflow)
Affects Version/s: None Resolution: Unresolved
Fix Version/s: None
I Labels: Ul I

> Description

v Test Details

Type: Generic

I Definition: Login Tests.Valid Login.Valid Login I

@ Please note

Note that Robot Framework considers the base folder of the project as the first test suite. The way you run your tests also affects Robot's XML;
so, if you execute the file from somewhere else or you execute the file directly by passing it as an argument, the test suite's information will
potentially be different.

A Test Execution will be created containing results for all test cases executed. In this case, you can see that it is also linked back to an existing Test Plan
where you can track the consolidated results from multiple "iterations" (i.e. Test Executions).

of] Robot / ROB-42

(@8 Execution results - output.xml - [1591121055062]

Edit QComment Synchronize Tests from... More ¥ CloseIssue Reopenlssue Admin ¥
~ Details
Type: D Test Execution Status: (View Workflow)
Priority: * Medium Resolution: Fixed
Affects Version/s: None Fix Version/s: None
Labels: None
Revision: 12
Test Environments: headlessfirefox
Test Plan: ROB-12

> Description

v Tests

Overall Execution Status

8 PASS

Total Tests: 8

= Filter(s)
224 Show entries Columns +
A Rank Key Summary Test Type #Req #Def Assignee Status
o ROB-21 Invalid Username And Password Generic 0 o Administrator [pass] >
o 2 ROB-20 Invalid Password Generic 0 0 Administrator [pass] >
o 3 ROB-19 Empty Username Generic 0 o Administrator [pass] >
o a ROB-18 Valid Login Generic 1 o Administrator [pass] >
[u] 5 ROB-23 Invalid Username Generic o o Administrator [pass] >
o 6 ROB-22 Empty Username And Password Generic 0 o Administrator [pass] >
o 7 ROB-14 Valid Login Generic 0 o Administrator [pass | >
[ROB-24 Empty Password Generic 0 0 Administrator [pass] >

Showing 1to 8 of 8 entries First Previous [l Next Last

Within the execution screen details, accessible from each row, you can look at the Test Run details which include the overall result and also specifics
about each keyword, including duration and status.

Robot / Test Plan: ROB-12 / Test Execution: ROB-17 / Test: ROB-18
’5 Valid Login © ExportTestasText a ReturntoTestExecution Next b
m
Execution Status [[1] PASS Assignee: Administrator Versions: -
m .
Executed By: Administrator Revision: -
& Started On: 14/May/20 4:42 PM (3 Finished On: 14/Mayj20 4:42 PM Tests -
=3 environments:
L . A .
= Comment Preview Comment + Execution Defects (0) Create Defect Create Sub-Task Add Defects Execution Evidence (0) Add Evidence v
s (Execution Details
By .
8 Test Description v
Test Issue Links (1) A
® tests
[ROB-11 Asa user, | can login the web application 2 INPROGRESS
Test Details ~
Test Type: Generic
Definition: Login Tests Valid Login.valid Login
Results A
Context Output Duration Status
Open Browser To Login Page - 3sec (D
Input Username R 20000ms (D
Input Password - 22000ms (D
o Submit Credentials - asoooms (D
5 Welcome Page Should Be Open - zoooms (IS
Pines Arnwenr - Tear (EEYTTEE

Attaching screenshots

Attaching screenshots at the step level is possible by using the SeleniumLibrary RF library. A configuration must be provided to embed the screenshots on
the output.xml report; it can also be configured to take screenshots automatically on failed steps.

Example of including and initializing the SeleniumLibrary:

Li brary Sel eni unli brary run_on_failure=Capture Page Screenshot screenshot_root_directory=EMBED

In the GitHub repository, there's a buggy web server implementation. If tests are run against it, two of them will fail (i.e., the ones related with valid login).

Overall Execution Status

6 PASS 2 FAIL

Total Tests: 8

= Filter(s)
B Apply Rank Show[100 V| entries Columns ~
Rank Key 4 summary Test Type #Req #Def Assignee Status
o 6 ROB-24 Empty Password Generic 0 0 Administrator [pass] >
a 5 ROB-19 Empty Username Generic 0 0 Administrator PASS >
o 7 ROB-22 Empty Username And Password Generic o 0 Administrator [pass] >
[w] 3 ROB-20 Invalid Password Generic 0 0 Administrator [pass] >
o 2 ROB-23 Invalid Username Generic 0 0 Administrator [pass] >
[w] 4 ROB-21 Invalid Username And Password Generic 0 0 Administrator [pass] »
o 1 ROB-14 Valid Login Generic 0 0 Administrator [Far] »>
o 8 ROB-18 Valid Login Generic 1 0 Administrator [P] >

Showing 1to 8 of 8 entries First Previous [i] Next Last

https://pypi.org/project/robotframework-seleniumlibrary/
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html#Importing
https://github.com/bitcoder/WebDemo
https://github.com/bitcoder/WebDemo/blob/master/demoapp/buggy_server.py

After importing the generated test report, we can see the screenshot in the Test Run details, in this case on the failed step.

Robot / TestPlan:ROB-12 / Test Execution: ROB-56 / Test: ROB-14
9 5 Export Test as Text A Return to Test Execution Execute with Exploratory App. Next »
Valid Login 9

There are no Test Run Custom Fields defined.

> Test Description

Test Type: Generic
Definition: Login Tests.Gherkin LoginValid Login
A Results
Context Output Duration Status
Given browser is opened to login page - 3sec
Open Browser To Login Page = 3sec
Open Browser Firefox driver log is alvays forced to to: 3sec
/Users/smst/exps /robot_webdemo/WebDemo/geckodriver-1.log
Maximize Browser Window = 606.000 ms

Set Selenium Speed S

Login Page Should Be Open - 3000 ms
Title Should Be Page title is 'Login Page'. 2,000 ms
When user “demo” logs in with password "mode” - 106.000 ms
Input Username - 34,000 ms
Input Text Typing text 'demo’ into text field 'username_field'. 34,000 ms
Input Password - 22,000 ms
Input Text Typing text 'mode’ into text field 'password_field'. 20.000 ms
Submit Credentials - 50.000 ms
Click Button Clicking button 'login button'. 50.000 ms
Then welcome page should be open - 1s1000ms (D
Location Should Be Location should have been ‘http://192.168.56.1:7272/welcome.htnl® but was 1s1000ms (IS
"http://192.168.56.1:7272/error html ' .
Capture Page Screenshot — 145,000 ms
Close Browser - 516.000 ms

Running tests in parallel, against different environments

In this distinct and more evolved example we're going to run tests in parallel using "pabot"; we'll also take advantage of the Test Environments concept
provided by Xray.

This example uses a fake travel agency site (kindly provided by BlazeMeter) as the testing target.

Welcome to the Simple Travel Agency!

The is a sample site you can test with BlazeMeter!

Check out our destination of the week! The Beach!

Choose your departure city:

Paris v

Choose your destination city:

Buenos Aires v

Find Flights

We have two tests that use low-level keywords (note: this is not a good practice; it's just for simplicity) and one of those keywords is defined within a
SeleniumLibrary plugin (i.e. it extends the keywords provided by SeleniumLibrary).

https://docs.getxray.app/display/XRAY700/Working+with+Test+Environments
https://blazedemo.com/

search_flights.robot

*** Settings ***
Li brary Sel eni unLi brary pl ugi ns=${ CURDI R}/ MyPI ugi n. py
Li brary Collections

Suite Setup Open browser ${ URL} ${ BRONGER}
Suite Teardown Cose Al Browsers

*** Variabl es ***

${ URL} htt p: // bl azedeno. cont
${ BRONBER} Chr ome
@ al | owed_destinati ons} Buenos Aires Rone London Berlin New York Dublin Cairo

*** Test Cases ***
The search page presents valid options for searching

[Tags] 1
Go To ${ URL}
Title Shoul d Be Bl azeDenp

El enent Should Be Visible css:input[type="submt']

Wait Until Elenent |s Enabled css:input[type='submt']

Wait Until Elenent |s dickable input[type="submit']

${val ues}= GCet List Itens xpat h: // sel ect[@anme="fronPort'] val ues=Tr ue

Log ${val ues}

${al |l oned_departures}= Create List Paris Philadelphia Boston Portland San D ego
Paol o

Li sts Shoul d Be Equal ${al | oned_depart ures} ${val ues}

${values}= GCet List Itens xpat h: //sel ect[@anme='toPort'] val ues=Tr ue
Log ${val ues}

Shoul d Be Equal ${al | oned_desti nati ons} ${val ues}

The user can search for flights
[Tags] search_flights
Go to ${ URL}
Sel ect From List By Value xpath://select[@ane= fronPort'] Paris
Sel ect From Li st by Val ue xpat h: // sel ect [@ane="toPort"'] London
Click Button css:input[type="submit']
@flights}= Get WebEl enents css:table[class="table']>tbody tr
Shoul d Not Be Enpty ${flights}

Mexico Gty

MyPlugin.py
fromrobot.api inport |ogger

from Sel eni unLi brary. base i nport LibraryConponent, keyword
from Sel eni unLi brary. | ocators inport ElenentFi nder

from sel eni um webdri ver. support.ui inport WebDriver Wit

from sel eni um webdri ver. support. expected_condi tions inport presence_of_el enent _| ocat ed
from sel eni um webdri ver. support. expected_conditions inport elenent_to_be_clickable
from sel eni um webdri ver. common. keys i nport Keys

from sel eni um webdri ver. common. by i nport By

cl ass MyPI ugi n(Li braryConponent):

def __init_ (self, ctx):
Li braryConponent. __init__(self, ctx)

@eywor d

def wait_until_elenent_is_clickable(self, selector):
""" Addi ng new keyword: Wit Until Element Is dickable. """
self.info('Wait Until Element Is Cickable')
wait = WebDriverWait(self.driver, 10)

ny_elem = sel f.el ement _finder.find("css:"+sel ector)
print(my_elen

first_result = wait.until (el ement_to_be_clickabl e((By. CSS _SELECTOR, selector)))
return first_result

Running the tests in parallel is possible using pabot.
Tests can be parallelized in different ways; we'll split them for running on a test basis.

We can also specify some variables; in this case, we'll use it to specify the "BROWSER" variable which is passed to the SeleniumLibrary.

chromebrowser.txt

--vari abl e BROASER: Chr one

pabot --argumentfilel ffbrowser.txt --argunentfile2 chronebrowser.txt --argunmentfile3 headl essffbrowser.txt --
argunentfil ed4 safaribrowser.txt --testlevelsplit O_basic/search_flights.robot

Running these tests will produce a report per each "argumentfileX" parameter (i.e. per each browser). We can then submit those to Xray (e.g. using "curl"
and the REST API), and assign it to distinct Test Executions where each one is in turn assigned to a specific Test Environment identifying the browser.

https://github.com/mkorpela/pabot

run_parallel_and_import.sh

#!/ bi n/ bash

BROWSERS=(fi refox chrome headl essff safari)
PROJECT=CALC
TESTPLAN=CALC- 6424

i=1
for browser in ${BRONSERS[@}; do
curl -H "Content-Type: multipart/formdata” -u admn:admin -F "fil e=@abot_resul ts/output$i.xm"
"http://jiraserver.exanpl e.conrest/raven/ 1. 0/inport/execution/robot?
proj ect Key=$PRQIECT&t est Pl anKey=$TESTPLAN&t est Envi r onment s=$br owser "
i =$((i+1))
done

In Xray, at the Test Plan-level we can see the consolidated results and for each test case we may drill-down and see all the runs performed and in which
environment/browser.

In this case, we have the total of 4 Test Executions (i.e. for safari, headlessff, chrome, firefox).

Calculator / CALC-6424

TP with automated tests (RF)

#Edit QComment Trigger Jenkins Build .. More ¥ StartProgress Resolvelssue Closelssue Admin ¥
~ Details
& Test Plan Status; (CID (view Workflow)
2 Major Resolution Unresolved
Version/s: None Fix Version/s: None
Component/s None
Labels: None
Test Count 2

> Description

v Tests

£ Test Plan Board + Create Test Execution ¥ J| + Add v

Overall Execution Status

PASS

Total Tests: 2

= Fiter(s)
= Show entries Al Environments = Columns
Key Summary Requirements #Test Executions Issue Assignee Latest Status

ow CALC-6426 The user can search for flights 10 Administrator
Key Summary Environment status
caLc-7571 Execution results - outputd.xmi - [1593668051551) safarl # =
caLc-7570 Execution results - output3.xm - [1593668047502] headlessif # s
caLc-7569 Execution results - output2.xm - [1593668043107] chrome # >
caLc-7s68 Execution results - outputi.xmi - (1593668038805] firefox 4 =

o» CALC-6427 The search page presents valid options for searching 10 Administrator

Showing 1to 2 of 2 entries. First previous [l Next Last

Test Executions
Add Test Executions
= Show (@ P entres Columns +
ey Summary rests Jesue Assgnes TestEnvronments Revision Fie Versions staws
0 oacsn Execution rasuls - outputd.ami - (1593668051551] 2 Administeator satar
0 oacsn Execution results - outputd.ami - (1593680475021 2 Administrator headiesstt
0 oacses Execution results - output2.ami - 1593568043107) 2 Administrator ehrome
0 oacses Exacution rasuls - outputt i - 1693668038305 2 Administeator firtox

Showing 110 4 of 4 entries First Provious [l Next Last

Tracking automation results

Besides tracking automation results on the Test Execution issues themselves, it's also possible to track in different places so the team gets fully aware of
them.

On the user story issue screen

Right from within the user story issue screen, we now see one test (i.e. automated script) covering it. We can also see its latest result and how it impacts
the overall coverage calculation for the user story; if the user story shows as “OK”, you know that all tests covering it passed, accordingly with the latest
results obtained for each one of them.

Robot / ROB-11
As a user, | can login the web application

#Edit QComment Assign More v StartProgress Resolvelssue Closelssue Admin v
v Details
Type: B story Status: D (view Workflow)
Priority 2 Major Resolution Unresolved
Affects Version/s: None Fix Version/s None
Labels: None
Sprint Robot Sprint 1

Requirement Status:

> Description

~ Test Coverage

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE
Scope: Version; Version: None - latest execution; Environment: All Environments ~
= Filter(s)
B Show (10 %) entries Columns +
P Status Resolution Key Summary Test Runs Test Status
oPEN Unresolved CALC-5057 Valid Login 0

Showing 1to 1 of 1 entries First Previous [l] Next Last

On the Agile Board
On Agile Boards (e.g. Scrum boards), we can now assess the coverage of our user story taking into account the testing results.

We may also track the overall Test Plan consolidated progress on the Test Plan issue related card. Note that we could include Test Executions in the
board if we wish so; however, in Cl scenarios that could be counterproductive.

PR cobor e -
Robot Sprint 1
)]
QUICK FILTERS: Only My Issues Recently Updated
T0 DO IN PROGRESS DONE
m
& ROB-11
1 As a user, | can login the web application
= Bz
ROB-12
£
= automated Ul tests (RF)

@2

On the Test Plan

At the Test Plan-level, the entity that defines the scope of testing and tracks its progress, we can quickly assess the latest consolidated test results (i.e. the
latest result obtained for each Test being tracked).

Robot / ROB-12

automated Ul tests (RF)

-
.
v

Edit Q Comment Trigger Jenkins Build ... More v Stop Progress

v Details

[Test Plan

2 Major

Type:
Priority:

Affects Version/s: None

Labels: None

> Description

v Tests

= Test Plan Board

Overall Execution Status

Resolve Issue

Status:
Resolution:

Fix Version/s:

Close Issue Admin v

(View Workflow)

Unresolved

None

+ Create Test Execution v + Add v

8 PASS

Total Tests: 8

= Contains text: ROB-18

Key Summary Requirements

amw ROB-18 Valid Login ROB-11 1

References

Robot Framework
Awesome Robot Framework (curated list of resources)
Code used in the first example

pabot

#Test Executions

Show entries

Issue Assignee

Administrator

Integration capabilities that Xray provides for Robot Framework XML reports

All Environments ¥ Columns ~

Latest Status

PASS

https://robotframework.org
https://fkromer.github.io/awesome-robotframework/
https://github.com/bitcoder/WebDemo
https://docs.getxray.app/display/XRAY700/Taking+advantage+of+Robot+XML+reports
https://github.com/mkorpela/pabot

	Testing using Robot Framework integration in Python or Java

