
Testing using Robot Framework integration in Python or
Java

Overview
Common requirements
Examples

The full ATDD workflow
Attaching screenshots

Running tests in parallel, against different environments
Tracking automation results

On the user story issue screen
On the Agile Board
On the Test Plan

References

Overview
Robot Framework is a tool used by teams adopting ATDD (Acceptance Test Driven Development).

Broadly speaking, it can be used to automate acceptance “test cases” (i.e. scripts) no matter the moment you decide to do so or the practices your team
follows even though it's preferable to do it at the start, involving the whole team in order to pursue shared understanding.

In this article, we will specify some tests using and see how we can have visibility of the corresponding results in Jira, using Xray.Robot Framework

This tutorial explores the .specific integration Xray provides for Robot Framework XML reports

Common requirements
Robot Framework
SeleniumLibrary
Java (if using the Java variant of the "Robot Framework")

Examples

The full ATDD workflow

In this example we're going to validate a dummy website (provided in the), checking for valid and invalid logins. GitHub repository

If the team is adopting ATDD and working collaboratively in order to have a shared understanding of what is going to be developed, why and some
concrete examples of usage, then the flow would be something similar to the following diagram.

You may find the full source for this example in this , which corresponds in essence to previous work by Pekka Klärck from the GitHub repository
Robot Framework Foundation.

https://www.slideshare.net/pekkaklarck/atdd-using-robot-framework
http://testobsessed.com/2008/12/acceptance-test-driven-development-atdd-an-overview/
http://robotframework.org/
https://docs.getxray.app/display/XRAY700/Taking+advantage+of+Robot+XML+reports
https://github.com/bitcoder/WebDemo
https://github.com/bitcoder/WebDemo

All starts with a user story or some sort of “requirement” that you wish to validate. This is materialized as a Jira issue and identified by the corresponding
issue key (e.g. ROB-11).

We can promptly check that it is “UNCOVERED” (i.e. that it has no tests covering it, no matter their type/approach).

A Test Plan can be created to define the scope of the testing that we aim to perform, group, and consolidate the corresponding results. Besides the user
story, we may also add the Test Plan to the Board and assign it explicitly to a sprint. This will increase visibility of testing progress and help closing the gap
between dev<>testers.

A tester/SDET could simply focus on implementing the automated test cases:

The tester would write one or more test suites and corresponding test cases, using his/her favorite tool/IDE
Each test case could be linked to the corresponding requirement/user story in Jira by adding its key as a tag
Tests could then be run locally, or from the CI pipeline
Unique, non-duplicating, Test entities would be auto-provisioned in Xray, corresponding to each test case; tester could also, optionally, enforce
the result to an existing Test entity by specifying its issue key as a tag

Let’s take the following .robot file as an example, which acts as a suite containing one test case.

login_tests/valid_login.robot

*** Settings ***
Documentation A test suite with a single test for valid login.
...
... This test has a workflow that is created using keywords in
... the imported resource file.
Resource resource.robot

*** Test Cases ***
Valid Login
 [Tags] ROB-11 UI
 Open Browser To Login Page
 Input Username demo
 Input Password mode
 Submit Credentials
 Welcome Page Should Be Open
 [Teardown] Close Browser

The previous Robot file uses a common resource that contains some generic variables and some reusable "keywords" (i.e., steps).

login_tests/resource.robot

*** Settings ***
Documentation A resource file with reusable keywords and variables.
...
... The system specific keywords created here form our own
... domain specific language. They utilize keywords provided
... by the imported SeleniumLibrary.
Library SeleniumLibrary run_on_failure=Capture Page Screenshot
screenshot_root_directory=EMBED

*** Variables ***
${SERVER} 192.168.56.1:7272
${BROWSER} Firefox
${DELAY} 0
${VALID USER} demo
${VALID PASSWORD} mode
${LOGIN URL} http://${SERVER}/
${WELCOME URL} http://${SERVER}/welcome.html
${ERROR URL} http://${SERVER}/error.html

*** Keywords ***
Open Browser To Login Page
 Open Browser ${LOGIN URL} ${BROWSER}
 Maximize Browser Window
 Set Selenium Speed ${DELAY}
 Login Page Should Be Open

Login Page Should Be Open
 Title Should Be Login Page

Go To Login Page
 Go To ${LOGIN URL}
 Login Page Should Be Open

Input Username
 [Arguments] ${username}
 Input Text username_field ${username}

Input Password
 [Arguments] ${password}
 Input Text password_field ${password}

Submit Credentials
 Click Button login_button

Welcome Page Should Be Open
 Location Should Be ${WELCOME URL}
 Title Should Be Welcome Page

Running the tests can be done from the command line or from within Jenkins (or any other CI tool); this will produce a XML based report (e.g.).output.xml

https://docs.getxray.app/download/attachments/111164533/output.xml?version=1&modificationDate=1682608907485&api=v2

Importing results is as easy as submitting them to the with a POST request (e.g. curl), or by using one of the CI plugins available for free (e.g. REST API Xr
).ay Jenkins plugin

An unstructured (i.e. "Generic") Test issue will be auto-provisioned the first time you import the results, based on the name of the test case and of the
corresponding test suites.

If you maintain the test case name and the respective test suites, the Test will be reused on subsequent result imports. You may always enforce the results
to be reported against an existing Test, if you wish so: just specify its issue key as a tag.

Tags can also be used to cover an existing requirement/user story (e.g. “ROB-11”): when a requirement issue key is given, a link between the test and the
requirement is created during the results import process.

Otherwise, tags are mapped as labels on the corresponding Test issue.

Examples of running tests from the command line

Running tests is primarily done using the "robot" utility which provides many options that allow you to define which tests to run, the output
directory and .more

You may also specify some variables and their values.

Next follows some different usage examples.

If you're using Python:

robot -d output --variable BROWSER:Firefox login_tests

If you're using Java:

java -jar robotframework-3.0.jar login_tests

https://docs.getxray.app/display/XRAY700/Import+Execution+Results+-+REST
https://docs.getxray.app/display/XRAY700/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY700/Integration+with+Jenkins
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#id170

A Test Execution will be created containing results for all test cases executed. In this case, you can see that it is also linked back to an existing Test Plan
where you can track the consolidated results from multiple "iterations" (i.e. Test Executions).

Please note

Note that Robot Framework considers the base folder of the project as the first test suite. The way you run your tests also affects Robot's XML;
so, if you execute the file from somewhere else or you execute the file directly by passing it as an argument, the test suite's information will
potentially be different.

Within the execution screen details, accessible from each row, you can look at the Test Run details which include the overall result and also specifics
about each keyword, including duration and status.

Attaching screenshots

Attaching screenshots at the step level is possible by using the RF library. A must be provided to embed the screenshots on SeleniumLibrary configuration
the output.xml report; it can also be configured to take screenshots automatically on failed steps.

Example of including and initializing the SeleniumLibrary:

Library SeleniumLibrary run_on_failure=Capture Page Screenshot screenshot_root_directory=EMBED

In the , there's a implementation. If tests are run against it, two of them will fail (i.e., the ones related with valid login).GitHub repository buggy web server

https://pypi.org/project/robotframework-seleniumlibrary/
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html#Importing
https://github.com/bitcoder/WebDemo
https://github.com/bitcoder/WebDemo/blob/master/demoapp/buggy_server.py

After importing the generated test report, we can see the screenshot in the Test Run details, in this case on the failed step.

Running tests in parallel, against different environments

In this distinct and more evolved example we're going to run tests in parallel using "pabot"; we'll also take advantage of the concept Test Environments
provided by Xray.

This example uses a (kindly provided by BlazeMeter) as the testing target.fake travel agency site

We have two tests that use low-level keywords (note: this is not a good practice; it's just for simplicity) and one of those keywords is defined within a
SeleniumLibrary plugin (i.e. it extends the keywords provided by SeleniumLibrary).

https://docs.getxray.app/display/XRAY700/Working+with+Test+Environments
https://blazedemo.com/

search_flights.robot

*** Settings ***
Library SeleniumLibrary plugins=${CURDIR}/MyPlugin.py
Library Collections

Suite Setup Open browser ${URL} ${BROWSER}
Suite Teardown Close All Browsers

*** Variables ***
${URL} http://blazedemo.com/
${BROWSER} Chrome
@{allowed_destinations} Buenos Aires Rome London Berlin New York Dublin Cairo

*** Test Cases ***
The search page presents valid options for searching
 [Tags] 1
 Go To ${URL}
 Title Should Be BlazeDemo
 Element Should Be Visible css:input[type='submit']
 Wait Until Element Is Enabled css:input[type='submit']
 Wait Until Element Is Clickable input[type='submit']
 ${values}= Get List Items xpath://select[@name='fromPort'] values=True
 Log ${values}
 ${allowed_departures}= Create List Paris Philadelphia Boston Portland San Diego Mexico City São
Paolo
 Lists Should Be Equal ${allowed_departures} ${values}
 ${values}= Get List Items xpath://select[@name='toPort'] values=True
 Log ${values}
 Should Be Equal ${allowed_destinations} ${values}

The user can search for flights
 [Tags] search_flights
 Go to ${URL}
 Select From List By Value xpath://select[@name='fromPort'] Paris
 Select From List by Value xpath://select[@name='toPort'] London
 Click Button css:input[type='submit']
 @{flights}= Get WebElements css:table[class='table']>tbody tr
 Should Not Be Empty ${flights}

MyPlugin.py

from robot.api import logger

from SeleniumLibrary.base import LibraryComponent, keyword
from SeleniumLibrary.locators import ElementFinder

from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support.expected_conditions import presence_of_element_located
from selenium.webdriver.support.expected_conditions import element_to_be_clickable
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.by import By

class MyPlugin(LibraryComponent):

 def __init__(self, ctx):
 LibraryComponent.__init__(self, ctx)

 @keyword
 def wait_until_element_is_clickable(self, selector):
 """Adding new keyword: Wait Until Element Is Clickable."""
 self.info('Wait Until Element Is Clickable')
 wait = WebDriverWait(self.driver, 10)

 my_elem = self.element_finder.find("css:"+selector)
 print(my_elem)
 first_result = wait.until(element_to_be_clickable((By.CSS_SELECTOR, selector)))
 return first_result

Running the tests in parallel is possible using .pabot

Tests can be parallelized in different ways; we'll split them for running on a test basis.

We can also specify some variables; in this case, we'll use it to specify the "BROWSER" variable which is passed to the SeleniumLibrary.

chromebrowser.txt

--variable BROWSER:Chrome

pabot --argumentfile1 ffbrowser.txt --argumentfile2 chromebrowser.txt --argumentfile3 headlessffbrowser.txt --
argumentfile4 safaribrowser.txt --testlevelsplit 0_basic/search_flights.robot

Running these tests will produce a report per each "argumentfileX" parameter (i.e. per each browser). We can then submit those to Xray (e.g. using "curl"
and the REST API), and assign it to distinct Test Executions where each one is in turn assigned to a specific Test Environment identifying the browser.

https://github.com/mkorpela/pabot

run_parallel_and_import.sh

#!/bin/bash

BROWSERS=(firefox chrome headlessff safari)
PROJECT=CALC
TESTPLAN=CALC-6424

i=1
for browser in ${BROWSERS[@]}; do
 curl -H "Content-Type: multipart/form-data" -u admin:admin -F "file=@pabot_results/output$i.xml"
"http://jiraserver.example.com/rest/raven/1.0/import/execution/robot?
projectKey=$PROJECT&testPlanKey=$TESTPLAN&testEnvironments=$browser"
 i=$((i+1))
done

In Xray, at the Test Plan-level we can see the consolidated results and for each test case we may drill-down and see all the runs performed and in which
environment/browser.

In this case, we have the total of 4 Test Executions (i.e. for safari, headlessff, chrome, firefox).

Tracking automation results
Besides tracking automation results on the Test Execution issues themselves, it's also possible to track in different places so the team gets fully aware of
them.

On the user story issue screen

Right from within the user story issue screen, we now see one test (i.e. automated script) covering it. We can also see its latest result and how it impacts
the overall coverage calculation for the user story; if the user story shows as “OK”, you know that all tests covering it passed, accordingly with the latest
results obtained for each one of them.

On the Agile Board

On Agile Boards (e.g. Scrum boards), we can now assess the coverage of our user story taking into account the testing results.

We may also track the overall Test Plan consolidated progress on the Test Plan issue related card. Note that we could include Test Executions in the
board if we wish so; however, in CI scenarios that could be counterproductive.

On the Test Plan

At the Test Plan-level, the entity that defines the scope of testing and tracks its progress, we can quickly assess the latest consolidated test results (i.e. the
latest result obtained for each Test being tracked).

References
Robot Framework
Awesome Robot Framework (curated list of resources)
Code used in the first example
Integration capabilities that Xray provides for Robot Framework XML reports
pabot

https://robotframework.org
https://fkromer.github.io/awesome-robotframework/
https://github.com/bitcoder/WebDemo
https://docs.getxray.app/display/XRAY700/Taking+advantage+of+Robot+XML+reports
https://github.com/mkorpela/pabot

	Testing using Robot Framework integration in Python or Java

