
Trigger a Jenkins Pipeline

Overview
In this example we are configuring a Remote Job Trigger for Jenkins that Playwright tests and executes s

 the execution results back to Xray.ends

Prerequisites

For this example we will use as the CI/CD tool that will execute tests.Jenkins Playwright

 What you need:

Access to a Jenkins instance
Xray Enterprise installed in your Jira instance
Have a Jenkins job that you can adapt/use to invoke remotely
Understand Jenkinsfile

Configure a new RJT for Jenkins in Xray
This example requires configuration in both sides (Xray and Jenkins) so that we can take advantage of
the combination of both tools.

The jenkinsfile will configure a multi-step pipeline that extracts the Playwright test code, it and executes s
 the execution results back to Xray.hips

Configure Jenkins using a jenkinsfile

We use a jenkinsfile to configure the pipeline in Jenkins.

What you'll learn

How to configure the remote jobs triggering feature
How to trigger remote jobs from Test Plans
How to configure and validate shipping the test results in Jira

Source-code for this tutorial

code is available in GitHub

Overview
Prerequisites
Configure a new RJT for Jenkins in Xray

Configure Jenkins using a jenkinsfile
Configure a Remote Jobs Trigger in Xray for Jenkins

Trigger
Send results back to Xray

Steps
Tips
References

https://www.jenkins.io/
https://playwright.dev/
https://github.com/Xray-App/tutorial-RJT

jenkinsfile

pipeline {
 parameters {
 string(name: 'projectKey', defaultValue: '')
 string(name: 'testPlanKey', defaultValue: '')
 }
 agent {
 docker {
 image 'mcr.microsoft.com/playwright:v1.27.0-focal'
 }
 }
 stages {
 stage('install playwright') {
 steps {
 sh '''
 npm i -D @playwright/test
 npx playwright install
 '''
 }
 }
 stage('test') {
 steps {
 catchError(buildResult: 'SUCCESS', stageResult: 'FAILURE') {
 sh '''
 PLAYWRIGHT_JUNIT_OUTPUT_NAME=xray-report.xml npx playwright
test
 '''
 }
 }
 }
 stage('Import results to Xray') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/junit',
importFilePath: 'xray-report.xml', importToSameExecution: 'true',
projectKey: params.projectKey, testPlanKey: params.testPlanKey,
fixVersion: '1.2', revision: '131', serverInstance: '10be58cc-2776-49a7-
be60-b615dc99f4c0'])
 }
 }
 stage('Extract Variable from log'){
 steps {
 script {
 def logContent = Jenkins.getInstance().getItemByFullName(env.
JOB_NAME).getBuildByNumber(Integer.parseInt(env.BUILD_NUMBER)).logFile.text
 env.testExecs = (logContent =~ /XRAY_TEST_EXECS:.*/).findAll().
first()
 echo testExecs
 }
 }
 }
 }
 post
 {
 always {
 junit '*.xml'
 }
 }
}

On the above jenkinsfile we are defining two parameters that will be passed when the build is invoked.

jenkinsfile

...
parameters {
 string(name: 'projectKey', defaultValue: '')
 string(name: 'testPlanKey', defaultValue: '')
 }
...

The received can be used in the remaining steps of the pipeline. In order to define what are parameters
the parameters we have added a parameters section with he name of the parameter and a possible
default value.

Within the step to run the tests we have added a function to make sure that the next step is performed
even if the actual step This is important to assure that the results are sent to Xray.fails.

jenkinsfile-failure

...
catchError(buildResult: 'SUCCESS', stageResult: 'FAILURE') {
...

Using the method in case of an error, we are forcing the step to continue the Pipeline catchError
execution from the statement following the step.catchError

The behavior of the step when an exception is thrown can be configured to print a message, set a build
result other than failure, change the stage result, or ignore certain kinds of exceptions that are used to
interrupt the build.

Once the jenkinsfile is uploaded in Jenkins it is ready to start to perform the tasks defined in the stages
and steps.

We are going to dive into the last part of the jenkinsfile, where we send the results back to Xray, in
another section.

Configure a Remote Jobs Trigger in Xray for Jenkins

In order to use the configuration of a RJT in Xray you need to access the area and Project Settings
click on the option.Remote Jobs Trigger

This will open the configuration page where we can configure remote jobs for Remote Jobs Trigger
Jenkins, Bamboo, GitLab, GitHub and Azure DevOps. You can activate and deactivate the configurations
by switching the toggles next to each.

Once you have activated the configuration that you are interested, in our case Jenkins Configuration,
click the to configure your new job. This opens a new form that must New Jenkins Configuration
filled with proper information.

Fill the Configuration Name with meaningful information that allows you to know what is the purpose
of the job just by reading the name.

The is the name of the project/job in Jenkins, make sure that they match.Job Name

Next we have the this can be defined in the configuration in Jenkins. Access your API Token, project
project page in Jenkins and scroll down to the area.Build Triggers

The Authentication Token defined in Jenkins must be the same defined in Xray API Token of the R
emote Jobs Trigger configuration, in our case 'MyToken'.

In the field define the name r with proper permissions to invoke the Jenkins Username of the Jenkins use
Job. Make sure it has the right permissions in Jenkins or the job will return an authentication error when
used.

Only one configuration can be active at each time.

Fill the of your Jenkins instance and in the field put the API URL with the base URL Password
password used by the user identified by the Username above.

Finally we have reached the last configuration fields available: Parameters (Optional), that is a list of key
/value pairs that you have defined in you Jenkins pipeline and want to pass from Xray.

You can define static ones or you can use dynamic filled fields available in Xray (more info). In our here
case we want to pass the Project key and the Test Plan key so that we can use them when shipping the
execution results back to Xray.

For that we use the following options available from Xray:

 that will be filled with the key of the project from where the job is called.${PROJECT_KEY}
${ISSUE_KEY} that will be filled with the issue key, in our case the Test Plan key, from where
the job was started from.

The configuration with all the fields filled will look like this:

Once done click the button and activate the configuration by switching the toggle to on:Save Status

Trigger
Once the configuration is done and active you can navigate to, e. g. the Test Plan, from where you want
to trigger the job, there you will see that a new button is available to trigger the job you just have
configured.

Make sure that the names of the parameters match between what you have configured in the
jenkinsfile and the Remote Jobs Triggers configuration.

https://docs.getxray.app/display/XRAY700/Configuring+Remote+Jobs

When you choose to call the job a new confirmation window will appear with Remote Jobs Trigger
the status of the invocation, either success or failure.

Send results back to Xray
In the above example we have defined a job in another tool and invoked it from Xray. This job will
execute the Playwright tests and generate a Junit report.

Now we need to have those results back into Xray for full visibility. The following section will show you
two ways you can use to have those results shipped back into Xray.

Steps

The Xray plugin for Jenkins provides steps that enable you to import the results to Xray.

Let us look into more detail over the step available in Jenkins and that can be XrayImportBuilder
used in your pipeline definition.

Remember that in our jenkinsfile we have defined parameters in the beginning of the file and one step to
import the results into Xray.

Notice that the status is of the invocation of the job only (not the status of the execution of the
job). If you get a failure status please review the configuration in the previous sections.

More information on the Jenkins integration available .here

https://docs.getxray.app/display/XRAY700/Jenkins+pipeline+integration

jenkinsfile

pipeline {
 parameters {
 string(name: 'projectKey', defaultValue: '')
 string(name: 'testPlanKey', defaultValue: '')
 }
...
stage('Import results to Xray') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/junit',
importFilePath: 'xray-report.xml', importToSameExecution: 'true',
projectKey: params.projectKey, testPlanKey: params.testPlanKey,
fixVersion: '1.2', revision: '131', serverInstance: '10be58cc-2776-49a7-
be60-b615dc99f4c0'])
 }
 }
...

With these options we are saying to the Pipeline that we are going to receive two parameters:

projectKey
testPlanKey

On the import step we are using those parameters to define what is the Jira Project that we are import
into and what is the Test Plan we will associate the result to.

Let's look into the step in more detail, explaining each option:

$class: the class used in this step (' ').XrayImportBuilder
endpointName: Xray supports multiple but for this case we are using ' 'formats /junit
importFilePath: has the file name with the Junit test results that we want to import (xray-

).report.xml
importToSameExecution:
projectKey: The key from the project that we want to import into (in our case passed from the
parameter of the Xray Remote Jobs Triggering job).
testPlanKey: The key from the Test Plan that we want to import into (in our case passed from
the parameter of the Xray Remote Jobs Triggering job).
fixVersion: fixVersion to be associated to the results imported.
revision: Revision that we want to associate to the execution results imported.
serverInstance: The server instance id define in Jenkins when we have configured the Jira
instance available.

Once the pipeline ends with success you can check details in the console output of the build in Jenkins to
make sure all went as expected.

We can see that it has imported the execution results with success and that it has created a new Test
Execution: (as well as other relevant information).CE-26

When accessing the Test Plan we can see that the results were ingested and the overall status is visible
from the detail view of the issue.

Make sure that the parameters names match the ones configured in the Xray Remote Jobs
 configuration for Jenkins.Trigger

https://docs.getxray.app/display/XRAY/Integration+with+Jenkins#IntegrationwithJenkins-Xray:ResultsImportTask

The details of the results are present in the details of the Test Execution, after clicking in the Test
Execution link, we need to click the option in the drop down menu:Execution Details

This opens the detail page of the Test Execution where we have the details sent through the import of
the test results:

Tips
Make sure that you define parameters in the jenkinsfile if you want to pass some.
When defining parameters make sure that the parameters names match in both tools.
The Authentication Token from Jenkins pipeline must match the API Token from Xray side.

Confirm that the user that you are using have the correct permissions in both tools.

References
Triggering Remote Jobs
Jenkins pipeline integration
Integration with Jenkins
Playwright

Overview
Prerequisites
Configure a new RJT for Jenkins in Xray

Configure Jenkins using a jenkinsfile
Configure a Remote Jobs Trigger in Xray for Jenkins

Trigger
Send results back to Xray

Steps
Tips
References

https://docs.getxray.app/display/XRAY700/Triggering+Remote+Jobs
https://docs.getxray.app/display/XRAY/Jenkins+pipeline+integration
https://docs.getxray.app/display/XRAY/Integration+with+Jenkins
https://playwright.dev/

	Trigger a Jenkins Pipeline

