
1.

2.

1.

2.

How to Optimize Data-driven Automation with Test Case
Designer

Overview

Why data-driven automation can be a good choice

When we talk about prioritizing tests for automation, it often comes down to high repetitiveness of actions
and high number of iterations. Data-driven testing fits that pattern well and helps with some of the
adoption barriers:

It removes the need to create an individual script for each test case, which is typically a time-
consuming process. But often more importantly, it simplifies and accelerates maintenance
because most changes to the test script do not affect the test data, and vice versa. Scaling
execution up or down is also more flexible.

It can make collaboration easier since reviewing a data table does not require special technical
skills. That, in turn, accelerates the overall process (since any subject matter expert can add
iterations) and increases test data accuracy. The reporting can be set up to clearly reflect the
status of each iteration, just as it would for separate scripts.

Of course, data-driven automation is not the universal solution, a few of its limitations are:

Skill level requirements - if each iteration has enough “uniqueness” about its actions &
validations or complexity of the expected result, trying to fit numerous iterations into 1 script will
result in the overload of conditional statements. That would require a lot more automation
experience.

Shifting some of the problems to a different medium - manual creation & maintenance of data
sources can be only marginally less cumbersome than those of individual scripts. Data
relevancy and accuracy can still be large concerns.

For the first limitation, the collaborative analysis of the draft data tables should validate the pattern early
on and properly choose the targets for data-driven automation, without excessively complicating the
overall implementation. For the avoidance of doubt, you will likely always have a mix of automation
approaches, where data-driven testing is one part.

For the second one, we can find a better alternative to manual data source management. For example,
Xray Enterprise Test Case Designer (TCD).

What you'll learn

Benefits of data-driven automation with Test Case Designer
Creation of compatible scripts in Playwright and Cypress
Validation of data-driven Xray reports in Jira

Definition

Data-driven testing is the practice of keeping the execution script separate from the test data.
In other words, you will have a single automation script that will reference a data table
containing multiple rows with scenarios.

As an added bonus, if you need to switch frameworks/languages, your data sources
would still be valid, and not as many scripts would need to be replaced.

Overview
Why data-driven automation can be a good choice
Why data-driven automation with Test Case Designer can be an even better choice

Prerequisites
How to do it

Common steps
Integrate Test Case Designer with Playwright

Build a TCD model and export scenarios
Create a script in Playwright
Import results to Xray

Integrate Test Case Designer with Cypress
Build a TCD model and export scenarios
Create a script in Cypress
Import results to Xray

Tips
References

1.
2.

a.
3.
4.
5.

a.

6.
7.

Why data-driven automation with Test Case Designer can be an
even better choice

Faster data source creation - designing the table by hand can’t compete with the algorithmic
generation when it comes to speed, especially for complex systems.

More efficient maintenance - changes at the model level are automatically applied to all affected
test cases.

Minimized redundancy & maximized thoroughness - the TCD algorithm makes sure the data
scenarios are as varied as possible while providing flexible coverage goals. That often leads to
earlier detection of defects.

Diverse collaboration artifacts - in addition to the data table, you can leverage auto-generated
visualizations like mind map and coverage matrix to make sure all stakeholders are on the same
page about the testing scope.

So let’s dive into how such optimized data-driven automation can be accomplished.

Prerequisites
For Playwright, in order to run this tutorial you need to have and .Nodejs install the playwright-test runner

For Cypress, you need to have .Cypress installed

How to do it

Common steps

We will discuss the implementation in 2 frameworks, with different complexity of the target apps. At a
high level, steps are similar for each example:

Create the setup in Jira with the requirement/story and the Xray Test Plan.
Create a model for the target system in TCD.

can add the model URL to the requirement story.
Export the data table as CSV.
Create the data-driven execution script in the selected framework/language.
Run that code and generate the report format that is supported by Xray.

optionally, configure the level of evidence in the report and add links to the requirement
and/or test plan from step 1.

Import the report file via REST API (directly or through a CI/CD tool).
Enjoy full visibility of the results in Xray.

Integrate Test Case Designer with Playwright

If at any point you need to switch to the “traditional” script-based approach, you can easily do
it by leveraging the data-driven BDD/Robot Framework templates under Scripts. Create 1
Scenario/Test Case block inside TCD, export or sync it to as many issues as you have
iterations. You don’t need to rebuild your models, and you still benefit from all 4 points above.

https://nodejs.org/en
https://playwright.dev/docs/intro
https://docs.cypress.io/guides/getting-started/installing-cypress

The scope of this tutorial is:

passing different combinations of data to the calculator app at https://treasurydirect.gov/BC
/SBCGrw

validating that the evaluation results are returned successfully (by checking the presence of the
title on the page, since we don't know the actual formula behind the app)

Build a TCD model and export scenarios

The model in TCD looks like this (a fairly straightforward approach of a parameter per UI field):

Note that:

Shorter parameter names without spaces or special characters work better.
The spelling of value names should match the syntax expected by the automation script. You
can share your draft TCD model with the engineers to verify that.
For data table and Scripts->Automate exports, only value expansion text will be populated, so
we can still benefit from the equivalence class approach for, e.g., IntRate or FedTaxRate,
without worrying about the value name syntax.

After generating Scenarios, we can export the CSV data table from the same screen:

As the automation is being developed, it may make sense to leverage the “1-way interactions” goal for
the TCD algorithm. It exposes the execution to each possible value with the smallest number of
iterations, which helps with the feedback speed.

You can import the model (;) and try this process yourselves:Server/DC Cloud

For Playwright versions 1.34 and later, if you want to attach screenshots, you will need to
additionally install this Playwright reporter and change the config file or the command line
statement accordingly.

https://treasurydirect.gov/BC/SBCGrw
https://treasurydirect.gov/BC/SBCGrw
https://docs.getxray.app/display/XRAY/Test+Models
https://docs.getxray.app/display/XRAYCLOUD/Test+Models
https://www.npmjs.com/package/@xray-app/playwright-junit-reporter

Create a script in Playwright

On the Playwright side, we first adjust the configuration file to support Xray options with the appropriate
Junit report formatting (“const xrayOptions” and “reporter” sections):

playwright.config.ts

import { defineConfig} from '@playwright/test';

/* JUnit reporter config for Xray https://playwright.dev/docs/test-
reporters#junit-reporter */
const xrayOptions = {
 embedAnnotationsAsProperties: true,
 textContentAnnotations: ['test_description'],
 embedAttachmentsAsProperty: 'testrun_evidence',
 outputFile: './TCDDemoReport.xml'
};

export default defineConfig({
 reporter: [
 ['line'],
 ['junit', xrayOptions]
],
 testDir: '.',
 outputDir: './test-results',
 timeout: 50 * 1000,
 expect: {
 timeout: 10000
 },
 fullyParallel: false,
 forbidOnly: !!process.env.CI,
 retries: process.env.CI ? 2 : 0,
 workers: process.env.CI ? 1 : undefined,
 use: {
 actionTimeout: 0,
 headless: false,
 viewport: { width: 1280, height: 720 },
 ignoreHTTPSErrors: true,
 video: 'on-first-retry',
 screenshot:'on-first-retry',
 trace: 'on-first-retry',
 },
 projects: [
 {
 name: 'chromium',
 use: { ...devices['Desktop Chrome'] },
 },
],
});

Then implement the driver script:

TCDDemo.spec.ts

import { test, expect } from '@playwright/test';
import fs from 'fs';
import path from 'path';
import { parse } from 'csv-parse/sync';

const records = parse(fs.readFileSync(path.join(__dirname, 'TCDDemo.
csv')), {
 columns: true,
 skip_empty_lines: true
});

for (const record of records) {
 test(`${record.Summary}`, async ({ page }, testInfo) => {
 testInfo.annotations.push({ type: 'requirements', description:
'TAC-117' });
 testInfo.annotations.push({ type: 'test_description', description:
`Confirm the calculation is successful for Initial Amount = ${record.
InitialInvAmount}, IntRate = ${record.IntRate}, Periodic Investment =
${record.PeriodicInv},
 Frequency = ${record.Frequency}, Years Invested = ${record.
YearsInvested}, Federal Tax Rate = ${record.FedTaxRate} `});

 console.log(record.Summary, record.InitialInvAmount, record.
IntRate, record.PeriodicInv, record.Frequency, record.YearsInvested,
record.FedTaxRate);

 await page.goto('https://treasurydirect.gov/BC/SBCGrw');
 await expect(page.getByRole('heading', { name: 'Growth Calculator'
})).toBeVisible();

 await page.locator('input[name="InitInvest"]').fill(record.
InitialInvAmount);
 await page.locator('select[name="IntRate"]').selectOption({label:
record.IntRate});
 await page.locator('select[name="PeriodicPmt"]').selectOption
({label:record.PeriodicInv});
 await page.locator('select[name="PmtFrequency"]').selectOption
({label:record.Frequency});
 await page.locator('input[name="Years"]').fill(record.
YearsInvested);
 await page.locator('input[name="FedTax"]').fill(record.FedTaxRate);

 const completeinputs = await page.screenshot();
 await page.getByRole('button', { name: 'CALCULATE' }).click();
 await expect(page.getByRole('heading', { name: 'Growth Calculator
Results' })).toBeVisible();
 const calcresults = await page.screenshot();
 await page.getByRole('button', { name: 'Back to Growth Calculator'
}).click();

 await testInfo.attach('completeinputs', { body: completeinputs,
contentType: 'image/png' });
 await testInfo.attach('calcresults', { body: calcresults,
contentType: 'image/png' });

 });
};

The core detail about this approach is, using the extra libraries, we first read the csv from TCD, then
iterate through it with the “for” loop:

CSV Handling

...
import fs from 'fs';
import path from 'path';
import { parse } from 'csv-parse/sync';

const records = parse(fs.readFileSync(path.join(__dirname, 'TCDDemo.
csv')), {
 columns: true,
 skip_empty_lines: true
});

for (const record of records) {
 ...
};

The parameters (aka column names from the CSV, e.g. record.InitialInvAmount) are passed in typical
Playwright methods (like Fill or selectOption) instead of hardcoding text.

Parameterized steps

...
 await page.locator('input[name="InitInvest"]').fill(record.
InitialInvAmount);
 await page.locator('select[name="IntRate"]').selectOption({label:
record.IntRate});
 await page.locator('select[name="PeriodicPmt"]').selectOption
({label:record.PeriodicInv});
 await page.locator('select[name="PmtFrequency"]').selectOption
({label:record.Frequency});
 await page.locator('input[name="Years"]').fill(record.
YearsInvested);
 await page.locator('input[name="FedTax"]').fill(record.FedTaxRate);
...

To improve the clarity and traceability, we can add a link to the requirement story, parameterized name &
description, and custom screenshots.

Customization

...
 test(`${record.Summary}`, async ({ page }, testInfo) => {
 testInfo.annotations.push({ type: 'requirements', description:
'TAC-117' });
 testInfo.annotations.push({ type: 'test_description', description:
`Confirm the calculation is successful for Initial Amount = ${record.
InitialInvAmount}, IntRate = ${record.IntRate}, Periodic Investment =
${record.PeriodicInv},
 Frequency = ${record.Frequency}, Years Invested = ${record.
YearsInvested}, Federal Tax Rate = ${record.FedTaxRate} `});

...

 const completeinputs = await page.screenshot();
 const calcresults = await page.screenshot();
...
 await testInfo.attach('completeinputs', { body: completeinputs,
contentType: 'image/png' });
 await testInfo.attach('calcresults', { body: calcresults,
contentType: 'image/png' });

Import results to Xray

Once the script completes the execution, we can import the results via, e.g., curl (parts in {} should be
customized based on your details):

Command Line Import

curl -H "Content-Type: multipart/form-data" -u {username}:{password} -F
"file=@{ReportName}.xml" “https://{JiraURL}/rest/raven/1.0/import/execution
/junit?projectKey={ProjectKey}&testPlanKey={TestPlanIssueKey}”

As a result, you should see five Test issues (linked to the requirement story and to the Test Plan issue)
and a Test Execution issue (with the screenshots under Execution details of each run):

Integrate Test Case Designer with Cypress

The scope of this tutorial is:

providing different combinations of applicant data to the web mortgage quoting system at https://
www.wellsfargo.com/mortgage/calculators/.

CI/CD

For the CI/CD process, please refer to this collection of tutorials - ; DC/Server Cloud

https://playwright.dev/docs/running-tests
https://www.wellsfargo.com/mortgage/calculators/
https://www.wellsfargo.com/mortgage/calculators/
https://docs.getxray.app/display/XRAY/Integrations
https://docs.getxray.app/display/XRAYCLOUD/Integrations

The flow starts with selecting “Buy a home” as the purpose, then entering location,
amount, and credit rating details. After the initial results, you can adjust the term.

checking the app's ability to return the loan evaluation results successfully by asserting the page
title (without looking at the specific numbers).

Build a TCD model and export scenarios

The model in TCD looks like this:

Note that:

It’s not wrong to include 1-value parameters for test data rationale (like “Purpose”) if you feel like
it’s better than hardcoding them in the script (often because you expect that parameter to grow
over time).

For some web apps, selection by labels can be too complicated, so you may have to switch to
indices (e.g. “Term” values). Refer to the feedback from your automation team.

This example showcases how to deal with conditional steps.

“If the DownpaymentPercentage is 20 or higher, then an additional question about the number
of borrowers doesn’t appear". On the TCD side, you can have:

either a “special” value (like “NABorrowers” for “NumberofPeople”) with the
corresponding set of constraints

or a “skip” constraint (DownpaymentPercentage[20,21 - 50] >> NumberofPeople)

The choice will determine which trigger will be assigned to the automation step that we
will show later.

You can and try this process yourselves:import the model

https://docs.getxray.app/display/XRAY/Quick+Getting+Started

Create a script in Cypress

On the Cypress side, you will also first need to adjust the package and the config files to support csv
handling with 3 imports:

Package.json

{
 "type": "module",
 "devDependencies": {
 "cypress": "^12.9.0",
 "cypress-if": "^1.10.4",
 "mocha": "^10.2.0",
 "mochawesome": "^7.1.3",
 "mochawesome-merge": "^4.3.0",
 "mochawesome-report-generator": "^6.2.0"
 },
 "dependencies": {
 "cypress-mochawesome-reporter": "^3.3.0",
 "neat-csv": "^7.0.0",
 "node-fetch": "^2.6.1"
 }
}

cypress.config.js

import { defineConfig } from 'cypress'

import fs from 'fs'
import path from 'path'
import neatCSV from 'neat-csv'

export default defineConfig({
 e2e: {
 async setupNodeEvents (on, config) {
 const filename = './cypress/fixtures/TCDDemo.csv'
 console.log('loading file', filename)
 const text = fs.readFileSync(filename, 'utf8')
 const csv = await neatCSV(text)
 console.log('loaded the quote data')
 console.log(csv)

 config.env.TCDDemo = csv
 return config
 },
 },
})

The optimized data table can go into cypress/fixtures while the execution script in cypress/e2e would look
like this:

TCDDemoScript.cy.js

const tcdloandata = Cypress.env('TCDDemo')
 describe(`Quote a mortgage`, () => {
 tcdloandata.forEach((l) => {
 it(`With ${l.PurchasePrice} purchase price and ${l.
DownpaymentPercentage} downpayment for ${l.NumberofPeople}`, () => {
 cy.visit('https://www.wellsfargo.com
/mortgage/calculators/')
 cy.contains(l.Purpose).click()
 cy.get('#label-locationField').click()
 cy.get('#locationField').type(l.Location)
 cy.contains('Next').click()
 cy.get('#label-purchasePriceAmount').
click()
 cy.get('#purchasePriceAmount').type(l.
PurchasePrice)
// the location suggestions window sometimes persists through all the
subsequent steps, so added {force: true} to ignore it
 cy.contains('Next').click({force: true})
 cy.get('#downPaymentPercent').clear()
 cy.get('#downPaymentPercent').type(l.
DownpaymentPercentage)
 cy.contains('Next').click({force: true})

 cy.get("body").then($body => {
 if ($body.find(`#${l.
NumberofPeople}`).length > 0) {
 //evaluates as true if button
exists at all
 cy.get(`#${l.
NumberofPeople}`).then($btn => {
 if ($btn.is(':
visible')){
 //you get here
only if button EXISTS and is VISIBLE
 cy.wrap($btn).click
({force: true})

 } else {
 //you get here
only if button EXISTS but is INVISIBLE
 cy.log('Question
about borrowers did not appear')
 }
 });
 } else {
 //you get here if
the button DOESN'T EXIST
 cy.log('Question
about borrowers did not exist on the page')
 assert.isOk
('everything','everything is OK');
 }
 })

 cy.get(`#${l.creditRating}`).click({force:
true})

 // form
 cy.get('#label-aboutYourselfFirstName').
click()
 cy.get('#aboutYourselfFirstName').type('I')
 cy.get('#label-aboutYourselfLastName').
click()
 cy.get('#aboutYourselfLastName').type('F')
 cy.get('#label-aboutYourselfEmail').click()
 cy.get('#aboutYourselfEmail').type
('test@test.org')
 cy.get('#label-aboutYourselfPhone').click()
 cy.get('#aboutYourselfPhone').type
('1111111111')
 cy.get('#label-aboutYourselfZipCode').
click()
 cy.get('#aboutYourselfZipCode').type
('28262')

 cy.get('#continue-view-rates').click
({force: true})
 cy.get('#consent-submit-click').click
({force: true})

 cy.get('#RST_Results_LoanTerm').select(l.
Term)

 cy.get('#skip').should('have.text',
'\n\t\t\t\tCustomized Mortgage Rate Results\n\t\t\t')

 })
 })
 })

Similarly to the Playwright example, we will first read the CSV file, then iterate the script through it with
the “forEach” loop.

TCDDemoScript.cy.js

const tcdloandata = Cypress.env('TCDDemo')
 ...
 tcdloandata.forEach((l) => {
 ...
 })

Keep in mind that the final Test Issue naming convention in Xray will concatenate these lines:

TCDDemoScript.cy.js

 describe(`Quote a mortgage`, () => {
 ...
 it(`With ${l.PurchasePrice} purchase price and ${l.
DownpaymentPercentage} downpayment for ${l.NumberofPeople}`, () => {
 ...
 })
 })

So you need to split the desired summary accordingly while parameterizing the second line.

The code below is responsible for the conditional logic we mentioned earlier around Downpayment
Percentage and Number of Borrowers.

TCDDemoScript.cy.js

...
 cy.get("body").then($body => {
 if ($body.find(`#${l.
NumberofPeople}`).length > 0) {
 cy.get(`#${l.
NumberofPeople}`).then($btn => {
 if ($btn.is(':
visible')){
 cy.wrap($btn).click
({force: true})
 } else {
 cy.log('Question
about borrowers did not appear')
 }
 });
 } else {
 cy.log('Question
about borrowers did not exist on the page')
 assert.isOk
('everything','everything is OK');
 }
 })

 ...

It searches for the dynamically defined element (`#${loan.NumberofPeople}`), checks whether it’s
present and visible, and, if yes, clicks it, otherwise, logs a message. In this implementation of the TCD
model, ‘#NABorrowers’ element would never be found, so the automation skips the step whenever that
value comes from the CSV.

Import results to Xray

The results import process would be identical to the Playwright one. You will notice that 2 tests are failing
as the results are not returned:

If you know the exact behavior of the element (visibility vs presence), that conditional
logic can be simplified.
If the “skip” constraint route is taken, the same code could work. Or you may need to
adjust the dynamic element syntax if ‘#_‘ is treated as undefined/syntax error.

This is a decent example of the execution feedback loop for combinatorial test design: we will often
exercise the combinations that haven't been explicitly mentioned in requirements. Since all individual
values are within valid ranges (based on UI tooltips), we would review the scenario as a whole with the
stakeholders and confirm the expected behavior. (You can notice that both failures share at least 1
similarity: the purchase price is close to the upper limit.)

If the lack of results is valid, we can make the assertion conditional on data in each iteration or adjust the
values/constraints in the TCD model to focus more on the combinations that return rates.

Tips
Generating CSV from the Scenarios screen in TCD results in only value expansion names being
included, where applicable. The CSV option on the Export screen is geared more towards
manual execution and will produce "Value name - Value expansion name" syntax.
To create script steps in Playwright, if you are not yet familiar with the syntax, you can use the C
odeGen feature.
The csv processing for Cypress recommends neat-csv package. Depending on the version, you
need to switch the Cypress config and package files between CommonJS and ES Module
scripting. Our example uses ES Module. Or you can try an alternative package.

References
Testing web applications using Playwright
https://playwright.dev/docs/test-reporters#junit-reporter
https://playwright.dev/docs/test-parameterize#create-tests-via-a-csv-file
Testing web applications using Cypress
https://docs.cypress.io/examples/recipes
https://learn.cypress.io/advanced-cypress-concepts/using-data-to-build-dynamic-tests
https://github.com/cypress-io/cypress-example-recipes/tree/master/examples
/fundamentals__dynamic-tests-from-csv

https://playwright.dev/docs/codegen-intro
https://playwright.dev/docs/codegen-intro
https://github.com/cypress-io/cypress-example-recipes/tree/master/examples/fundamentals__dynamic-tests-from-csv
https://docs.getxray.app/display/XRAY/Testing+web+applications+using+Playwright
https://playwright.dev/docs/test-reporters#junit-reporter
https://playwright.dev/docs/test-parameterize#create-tests-via-a-csv-file
https://docs.getxray.app/display/XRAY/Testing+web+applications+using+Cypress
https://docs.cypress.io/examples/recipes
https://learn.cypress.io/advanced-cypress-concepts/using-data-to-build-dynamic-tests
https://github.com/cypress-io/cypress-example-recipes/tree/master/examples/fundamentals__dynamic-tests-from-csv
https://github.com/cypress-io/cypress-example-recipes/tree/master/examples/fundamentals__dynamic-tests-from-csv

	How to Optimize Data-driven Automation with Test Case Designer

