
How to Integrate Test Case Designer with Robot Framework

In the "How to Optimize Data-driven Automation with Test Case Designer" tutorial (;), Server/DC Cloud w
e made a quick note that the efficient script-based approach is also possible in Test Case Designer
(TCD). So, we wanted to explore that topic more and give the spotlight to integrating TCD with Robot
Framework.

Robot Framework is an open source test automation framework for acceptance testing and acceptance
test-driven development. It follows different test case styles keyword-driven, behaviour-driven and data-
driven for writing test cases.

Some of the key Robot Framework advantages include ease of installation and use, good support for
both external libraries and built-in/custom keywords, and more readable & maintainable test cases.

Overview
One of the most common concerns we hear from clients is:

“Our current tests are good enough. Why invest the time and resources in
adopting the Test Case Designer methodology if it doesn’t move the needle?”

That may be true, but we don’t have to guess - TCD Analysis capabilities allow us to make a pretty
accurate comparison (you can learn more in the "How Are TCD Tests Objectively Superior?" tutorial from
the "Why is Test Case Designer helpful?" section). For this tutorial, we will use 2 test suites created for th

:e same requirement/coverage goal

"TCDBookingTests", representing the optimized output from TCD with 15 tests;
"TypicalBookingTests", representing the manually designed suite with tests (based on our 33
experience, it shows an example of a "pretty good job" for the manual effort type).

The requirement is to provide hotel availability options for the given reservation details at https://www.trip.
com/. We check this by validating that clicking the "Search" button successfully leads to the "Results"
page (by "properties found" page content).

We will first describe the integration steps for "TCDBookingTests" and then compare the coverage and
execution metrics between the two.

Prerequisites
In order to run this tutorial you need to have and .Python Robot Framework installed

Integrating Test Case Designer with Robot
Framework

What you'll learn

Brief introduction to Robot Framework
Creation of Robot scripts in Test Case Designer
Comparison of coverage and execution metrics

Overview
Prerequisites
Integrating Test Case Designer with Robot Framework

Build a TCD Model
Create a Robot script
Execute and import results

Comparison and Conclusion
Tips
References

https://docs.getxray.app/display/XRAY/How+to+Optimize+Data-driven+Automation+with+Test+Case+Designer
https://docs.getxray.app/display/XRAYCLOUD/How+to+Optimize+Data-driven+Automation+with+Test+Case+Designer
https://www.trip.com/
https://www.trip.com/
https://www.python.org/downloads/release/python-3111/
https://github.com/robotframework/robotframework/blob/master/INSTALL.rst#installing-using-pip

Build a TCD Model

It is built using a fairly straightforward approach of a parameter per UI field with a couple things to note:

For the Destination field, we are more interested in classes of search terms, less in the syntax
rules. So, we use 2 Values to represent categories, then add specific search terms using Value
Expansions.

The date-related parameters will need to be updated within the model to maintain execution
accuracy. The screenshot represents the model state at the time of publication. Alternatively,
you can consider using abstract values in TCD ("this month", "next month", "last day of the
month", etc.), then let automation determine the specifics.

For conditional steps, Robot Framework allows to use any syntax as the trigger, so we can
adjust the value naming to match the context - "checks" for the checkbox, numbers for the rating
stars. Neither wording has any special function within TCD itself.

Constraints should account for the date logic and the room-vs-people limitations:

For scenario generation, we assume the exact checkout date and the ratings are not as important, so we
switch them to 1-way:

You can and try this process yourselves:import the model

Create a Robot script

The key advantage at this step is that a user creates & maintains a single data-driven template in TCD
Automate and exports as many tests as there are rows on the TCD Scenarios screen, with all the
parameter values replaced inline. That combines efficiency and clarity/ease of use.

https://docs.getxray.app/display/XRAY/Quick+Getting+Started

TCD Automate Script

*** Settings ***
Documentation A test suite with TCD RF export in Gherkin style. TCD
Automate allows to create & maintain 1 data-driven template while
generating many Robot test cases with in-line variable values.
... This file contains the risk-based (mixed-strength) TCD suite
(15 TCs) with lower priority on checkout date and rating

Library BuiltIn
Library Dialogs
Library SeleniumLibrary

*** Variables ***
${BROWSER} headlesschrome
${DELAY} 1
${START URL} https://www.trip.com/
${DESTINATION TXTFIELD} //*[@id="hotels-
destination"]
${CHECKIN BTN} //*[@id="
searchBoxCon"]/div/div/ul/li[2]/div/div[1]

${ROOMSPLUS BTN} //*[@id="searchBoxCon"]/div
/div/ul/li[3]/div/div[3]/div[1]/div/span[3]
${ADULTSPLUS BTN} //*[@id="searchBoxCon"]
/div/div/ul/li[3]/div/div[3]/div[2]/div/span[3]
${CHILDRENPLUS BTN} //*[@id="searchBoxCon"]
/div/div/ul/li[3]/div/div[3]/div[3]/div/span[3]
${CHILDRENNAGE DIV} //*[@id="searchBoxCon"]
/div/div/ul/li[3]/div/div[3]/div[4]/div
${CHILD1AGE DROPDOWN} //*[@id="searchBoxCon"]/div
/div/ul/li[3]/div/div[3]/div[4]/div[1]/select
${CHILD2AGE DROPDOWN} //*[@id="searchBoxCon"]/div
/div/ul/li[3]/div/div[3]/div[4]/div[2]/select
${DONE1 BTN} //*[@id="searchBoxCon"]
/div/div/ul/li[3]/div/div[3]/div[4]/span
${DONE2 BTN} //*[@id="searchBoxCon"]
/div/div/ul/li[3]/div/div[3]/div[5]/span

${WORKTRAVEL CHECKBOX} //*[@id="searchBoxCon"]/div
/div/div/div[1]/div[1]

${SEARCH BTN} //*[@id="
searchBoxCon"]/div/div/ul/li[5]/div

*** Test Cases ***
Valid Booking Requests_TC<Test Case>_for <destination> with <rooms> rooms
and <adults> adults
 [Tags] TAC-242
 Given browser is opened to start page
 When user selects destination "<destination>"
 And user selects May 2023 "<checkindate>" check-in date and
"<checkoutmonth>" "<checkoutdate>" check-out date
 And user selects "<rooms>" rooms for "<adults>" adults and
"<children>" children
 And user "<workcheckbox>" work checkbox and selects "<rating>"
star rating
 Then clicking "Search" button generates results successfully

*** Keywords ***
Browser is opened to start page
 Open Browser ${START URL} ${BROWSER}
options=add_experimental_option("excludeSwitches", ["enable-logging"])
 Set Window Size 1920 1080
 Set Selenium Speed ${DELAY}
 Page Should Contain Your Trip Starts Here

user selects destination "${destination}"
 Input Text ${DESTINATION TXTFIELD}
${destination}

user selects May 2023 "${checkindate}" check-in date and
"${checkoutmonth}" "${checkoutdate}" check-out date
 Click Element ${CHECKIN BTN}

 Click Element //div[@class = 'c-calendar-month__title' and
text() = 'May 2023']/following-sibling::div//span[@class = 'day' and text()
= '${checkindate}']
 Click Element //div[@class = 'c-calendar-month__title' and
text() = '${checkoutmonth}']/following-sibling::div//span[@class = 'day'
and text() = '${checkoutdate}']

user selects "${rooms}" rooms for "${adults}" adults and "${children}"
children
 Sleep 2s
 Run Keyword If '${rooms}' == '2' Click
Element ${ROOMSPLUS BTN}
 Run Keyword If '${rooms}' == '3' Double
Click Element ${ROOMSPLUS BTN}

 Run Keyword If '${adults}' == '3' and '${rooms}' in
['1','2'] Click Element ${ADULTSPLUS BTN}
 Run Keyword If '${adults}' == '4' and '${rooms}' in
['1','2'] Double Click Element ${ADULTSPLUS BTN}
 Run Keyword If '${adults}' == '4' and '${rooms}' ==
'3' Click Element ${ADULTSPLUS BTN}

 Run Keyword If '${children}' == '1' Click
Element ${CHILDRENPLUS BTN}
 Run Keyword If '${children}' == '1' Select From List
By Value ${CHILD1AGE DROPDOWN} 12

 Run Keyword If '${children}' == '2' Double Click
Element ${CHILDRENPLUS BTN}
 Run Keyword If '${children}' == '2' Select From List
By Value ${CHILD1AGE DROPDOWN} <1
 Run Keyword If '${children}' == '2' Select From List
By Value ${CHILD2AGE DROPDOWN} 17

 Run Keyword If '${children}' == '0' Click
Element ${DONE1 BTN}
 Run Keyword If '${children}' != '0' Click
Element ${DONE2 BTN}

user "${workcheckbox}" work checkbox and selects "${rating}" star rating
 Run Keyword If '${workcheckbox}' ==
'checks' Click Element ${WORKTRAVEL CHECKBOX}
 Run Keyword If '${rating}' in ['2', '3', '4',
'5'] Click Element //*[@id="searchBoxCon"]/div/div
/div/div[2]/span[${rating}]
 Run Keyword If '${rating}' == '3 or
4' Click Element //*[@id="
searchBoxCon"]/div/div/div/div[2]/span[3]
 Run Keyword If '${rating}' == '3 or
4' Click Element //*[@id="
searchBoxCon"]/div/div/div/div[2]/span[4]

clicking "Search" button generates results successfully
 Click Element ${SEARCH BTN}
 Page Should Contain properties found
 Close Browser

Settings and Variables are defined similarly to any other Robot script. In the Test Cases section, there
are a couple of points to highlight:

1.

2.

3.

Test Cases section

*** Test Cases ***
Valid Booking Requests_TC<Test Case>_for <destination> with <rooms> rooms
and <adults> adults
 [Tags] TAC-242
 Given browser is opened to start page
 When user selects destination "<destination>"
 And user selects May 2023 "<checkindate>" check-in date and
"<checkoutmonth>" "<checkoutdate>" check-out date
 And user selects "<rooms>" rooms for "<adults>" adults and
"<children>" children
 And user "<workcheckbox>" work checkbox and selects "<rating>"
star rating
 Then clicking "Search" button generates results successfully

TCD only supports the Gherkin style of Robot scripting.
Requirement linking is handled via Tags.
As in other TCD Scripting examples, the steps are parameterized in order to connect to the
Scenarios table (e.g. "<destination>").

In the Keywords section, there are typically 3 ways of handling TCD parameters:

Direct argument

user selects destination "${destination}"
 Input Text ${DESTINATION
TXTFIELD} ${destination}

Part of xpath

Click Element //div[@class = 'c-calendar-month__title' and
text() = '${checkoutmonth}']/following-sibling::div//span[@class =
'day' and text() = '${checkoutdate}']

Part of condition (in this example, the age of children ("12") was not important enough to be a
parameter/value expansion, so it's hardcoded directly in the script)

Run Keyword If '${children}' == '1' Click
Element ${CHILDRENPLUS BTN}
Run Keyword If '${children}' == '1' Select From List
By Value ${CHILD1AGE DROPDOWN} 12

Once the script is ready, we will export it into the Robot format:

You can choose to leverage your own IDE for the template writing (to benefit from IntelliSense,
etc.) then copy it into TCD for the export process.

Execute and import results

We can run the tests from the command line, specifying the report name and format:

robot -d reports --output TCDDemoReport.xml TCDBookingTests.robot

If we choose to run them in parallel, we can and utilize the following command:install Pabot

pabot --testlevelsplit -d reports --output TCDDemoReport.xml
TCDBookingTests.robot

Once the script completes the execution , we can import results using your CI/CD tool of choice,
eventually with one of available plugins for them, or invoking Xray's REST API directly using `curl` utility.
For example (parts in {} should be customized based on your details):

curl -H "Content-Type: multipart/form-data" -u {username}:{password} -F
"file=@reports/{ReportName}.xml" “https://{JiraURL}/rest/raven/1.0/import
/execution/junit?projectKey={ProjectKey}&testPlanKey={TestPlanIssueKey}”

As a result, you should see 15 Test issues (linked to the requirement story and to the Test Plan issue)
and a Test Execution issue (with the step-by-step breakdown under Execution details of each run):

One scenario in "TCDBookingTests" fails because the UI error tooltip appears about the maximum stay
duration of 31 days. Before the selections, that limitation doesn't seem to be noted anywhere.

This could be an example of the execution feedback loop for combinatorial test design: we will often
exercise the combinations that haven't been explicitly mentioned in requirements. If the 31-day limit
hasn't been caught during the collaborative model creation, then, based on the execution failure, we
would confirm the expected behavior and, if the error is valid,

CI/CD

For the CI/CD process, please refer to this collection of tutorials - ; DC/Server Cloud

Also, you can learn more about Robot Framework integrations from these articles:

Taking advantage of Robot XML reports (DC/Server)
Testing using Robot Framework integration in Python or Java (DC/Server)
Taking advantage of Robot XML reports (Cloud)
Testing using Robot Framework integration in Python or Java (Cloud)

https://github.com/mkorpela/pabot
https://docs.getxray.app/display/XRAY/Integrations
https://docs.getxray.app/display/XRAYCLOUD/Integrations
https://docs.getxray.app/display/XRAY/Taking+advantage+of+Robot+XML+reports
https://docs.getxray.app/display/XRAY/Testing+using+Robot+Framework+integration+in+Python+or+Java
https://docs.getxray.app/display/XRAYCLOUD/Taking+advantage+of+Robot+XML+reports
https://docs.getxray.app/display/XRAYCLOUD/Testing+using+Robot+Framework+integration+in+Python+or+Java

add the constraint to the TCD model between checkindate[15,24] and checkoutdate[30, 31] and
/or
replace the value lists to focus more on the valid range.

A few scenarios in "TypicalBookingTests" fail for the same reason.

Comparison and Conclusion
Here are the final versions of both suites:

Based on the corresponding execution reports, we can compare the time:

 for the TCD suite vs minutes for the manually designed suite without parallelization ~15 minutes ~27
(~40 seconds difference with parallelization). This doesn't account for the much faster time to create the
TCD test suite.

With the help of TCD analysis capabilities, we can compare interaction coverage - for the TCD 100%
suite vs for the manually designed suite after 15 tests (96.8% for the manually designed suite after 84.9%
all 33 tests).

And, while harder to estimate, the increase in script (1 data-driven template in maintenance efficiency
TCD vs individual scripts in typical approach) is important to keep in mind.

Coverage graph for the "Optimized" suite:

Coverage graph for the "Typical" suite. Notice that the horizontal axis:

1) is on a different scale, which makes the shape look more accelerated than the one above (while the
actual percentages are lower on a test-by-test basis);

2) goes beyond 33 as TCD has to complete the mixed-strength coverage goal.

Tips
As mentioned above, this tutorial demonstrates the approach where "complete" Robot tests in
Gherkin style are generated from TCD. A data-driven implementation similar to the Playwright
/Cypress tutorial is also possible via a CSV/pipe-delimited data table exported from the TCD
Scenarios screen + the Test Template in RF (or using a specialized library).
For simplicity of the example, all executable code is in 1 file. You can split it into Resource.robot
and Booking.robot, if desired.
If the desired algorithm goal is 2-way, not mixed-strength, then Coverage Matrix can be used to
review the specific pairwise gaps in addition to the aggregate coverage percentage.

References
aking advantage of Robot XML reportsT (DC/Server); (Taking advantage of Robot XML reports

Cloud)
How Are TCD Tests Objectively Superior?
https://robotframework.org/SeleniumLibrary/
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#different-
output-files

https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#test-templates
https://github.com/Snooz82/robotframework-datadriver
https://docs.getxray.app/display/XRAY/Taking+advantage+of+Robot+XML+reports
https://docs.getxray.app/display/XRAYCLOUD/Taking+advantage+of+Robot+XML+reports
https://docs.getxray.app/pages/viewpage.action?pageId=105151602
https://robotframework.org/SeleniumLibrary/
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#different-output-files
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#different-output-files

	How to Integrate Test Case Designer with Robot Framework

