
Performance and load testing with Locust

Overview
Locust is an open source load testing tool that uses Python to write the tests.

Because it uses Python to define the tests, it is more friendly for developers and inherited all potentiality
of being driven by a language such as Python.

Even though it does not provide out of the box the ability to define and use KPIs, it has hooks and
extension mechanisms that will allow an implementation to support this need.

Pre-requisites

For this example, we will use to define a series of Performance tests and using the extension Locust
capacities of Locust, we will define two extensions to:

Write the results to Graphite and view those in Graphana
Define KPI's and make the build fail if they are not verified

 We will need:

Access to a that we aim to testdemo site
Understand and define Keep Performance Indicators (KPI) for our performance tests
Python environment with Locust installed
Docker (not mandatory but if you want to check results in Graphana a must have)

We will start to define a simple load test in that will target a demo site (travel agency) supplied by Locust
BlazeMeter that you can find .here

The test will exercise 3 different endpoints:

Perform GET requests to the "/login" endpoint
Perform POST requests to "/reserve" endpoint (where we will attempt to to reserve a flight from
Paris to Buenos+Aires)
Perform POSt requests to "/purchase" endpoint (where we will try to acquire the above reserved
flight adding the airline company and the price)

To start using please follow the .Locust documentation

The test will be simple as we have defined above, so let's look in more detail on what are each part is
exactly doing

What you'll learn

Define tests using Locust
Define KPIs, run the test and push the test report to Xray
Validate in Jira that the test results are available

Source-code for this tutorial

code is available in GitHub

Overview
Pre-requisites
KPI

Generate Xray Json
Graphana & Graphite
Integrating with Xray

API
Xray Json results

Tips
References

https://github.com/microsoft/playwright-test/blob/master/README.md
https://locust.io/
https://blazedemo.com/
https://locust.io/
https://blazedemo.com/
https://locust.io/
https://docs.locust.io/en/stable/installation.html
https://github.com/Xray-App/tutorial-python-locust

./LocustScript.py

class FlightSearchTest(TaskSet):
 @task
 def open_login_page(self):
 self.client.get("/login")

 @task
 def find_flight_between_Paris_and_Buenos_Aires(self):self.client.post("
/reserve.php", {
 'fromPort': 'Paris', 'toPort': 'Buenos+Aires'
 })

 @task
 def purchase_flight_between_Paris_and_Buenos_Aires(self):self.client.
post("/purchase.php", {
 'fromPort': 'Paris', 'toPort': 'Buenos+Aires',
 'airline': 'Virgin+America','flight': 43,
 'price': 472.56
 })

class MyLocust(HttpUser):
 tasks = [FlightSearchTest]
 host = "http://blazedemo.com"

The file will have two classes, one to define the requests we want to do and another to specify the
endpoint and the tasks we want to execute.

The first Class we see is that is of the type this allows you to mimic your FlightSearchSimulator TaskSet
site structure and organize the tests the same way your site is organized (in this case we are using to
demonstrate the capacity because as the example is simple we will not need it).

Within the class we can see decorators that will indicate to Locust that these are the tasks to be @tasks
executed in the test.

The second class, is used to define what are the tasks to be executed, and this is done setting MyLocust,
the tasks with a list of tasks to be executed:

tasks = [FlightSearchTest]

In our case only one: , but we could define a list of tasks and even define weights of FlightSearchTest
executions.

Finally the target host that will be used as the target of the tests.

In order to execute the tests you can use two ways, using the UI or the command line, in our case we will
use the command line.

In the command line we can define a series of parameters that will define the way Locust will handle the
test, such as:

The script we want to execute through the " " parameter,-f
How many users we want to use with " ", this will be the maximum number of users,-u
The hatching time with " " that will define the time period used to add users until we reach the -r
number we have defined earlier
How long the script will execute with " ", is this parameter is not passed it will run indefinitely or -t
until interrupted,
If we want to execute the tests in headless mode with " "--headless
Generate the CSV output files (exceptions, failures, stats_history and stats)

The final command will be f the form:

locust -f LocustScript.py --headless -u 50 -r 1 -t 1m --csv=example

This command will execute the in headless mode, will start with one user and grow 1 LocustScript.py
user each second until reaching the maximum of 50. It will also generate the CSV files and will be
executing for 1 minute.

This will be enough to execute performance tests, however a manual validation of results must always be
done in the end to assess if the performance is enough of not, and looking at CSV files is not always
easy.

We need the ability to:

Define KPI that will assert the performance results and fail the build of they are not fulfilled in an
automated way (this will be useful to integrate in CI/CD tools)
Convert the KPI result in a way that can be ingested in Xray (generate Xray Json results)
Visualise the tests in Graphana as they are being executed (a good extra, not mandatory)

In order to do that we will extend Locus and add listeners that will interpret the results and evaluate their
output and also redirect the logs to Graphana to be viewed.

KPI
In order to use performance tests in a pipeline we need those to be able to fail the build if the result is not
the expected, for that we need to have the ability to automatically assess if the performance tests were
successful (within the parameters we have defined) or not.

For demonstration purposes we will use the following present in GitHub, this will allow us implementation
to define KPIs per request, the KPIs being used are:

RPS (Requests Per Second)
Percentile 90
Error Rate

This enable us to define KPis for each request and fail the build in case they are not followed, to do that
in our class we will add the following lines:

 def __init__(self, environment):
 super().__init__(environment)

 @events.init.add_listener
 def my_locust_init(environment, **_kwargs):
 KPI_SETTINGS = [{'/login': [('percentile_90', 5), ('rps', 500),
('error_rate', 0)]},
 {'/reserve.php': [('percentile_90', 5), ('rps',
500), ('error_rate', 0)]},
 {'/purchase.php': [('percentile_90', 5), ('rps',
500), ('error_rate', 0)]}]
 KpiPlugin(env=environment, kpis=KPI_SETTINGS)

For each one of the endpoints we have defined 3 KPIs (but we could have defined only one or two), in
each KPI we define a value that if exceeded will cause an error.

In this example particularly if:

the 90 percentile exceed 5ms an error will be triggered,
the requests per second will exceed 500ms an error will be generated

https://gist.github.com/ludeknovy/af039ea46d568490cd8d09f5d0dad90d

any error appear during the execution an error will be triggered (because of the error rate KPI).

Once an error is generated we can react and fail the build based on these results.

In the output these results will look like this:

Generate Xray Json

Now we are executing Tests to validate the performance of our application and we are capable of
defining KPIs to validate each performance indicator in a build (enable us to add these Tests to CI/CD
tools given that the execution time is not long), so what we need is to be able to ship these results to
Xray to bring visibility over these types of Tests also.

We have seen that Locust produces CSV files of the requests and errors (valuable to perform a post
analysis but hard to convert into proper pass or fail result) but we need to produce a result that will hold
all the information produced and will bring value to our project, to do so, we are going to create an Xray

 report to hold these results.Json

First let us explain the approach we are taking towards these performance Tests, in Xray we have
defined 3 Tests:

COM-158 Error Rate
COM-159 Requests Per Second
COM-160 90 Percentile

Each one of them will gather the results of those indicators in our application and failure or success will
depend on all the endpoints for each indicator we are considering for our application.

If any of those fail we can check the details and understand what particular endpoint have failed, but
overall what is important is that the overall result will dictate if the it was successful or not.

The last change will done in the " " where we are going to add logic to create the Xray Json kpi_listener.py
file, append the CSV to the file and write the output to a file, for that we have created new methods that
will handle that logic:

kp_listener.py

...
 @staticmethod
 def injectCSVFile(fileName):
 with open(fileName, 'rb') as open_file:
 byte_content = open_file.read()
 return b64encode(byte_content).decode('utf-8')

 def appendToXrayResult(self, testkey, metric, name, value, comment,
status):
 done = False
 if self.data['tests']:
 for tests in self.data['tests']:
 for key, value in tests.items():
 if key == 'testKey' and value == testkey:
 tests['results'].append({
 'name': metric + ' for ' + name,
 'log': comment,
 'status': status
 })
 done = True

 if not done:
 info = {
 'info': {
 'summary': ' Perf test',
 'description': 'Perf test',

https://docs.getxray.app/display/XRAYCLOUD/Using+Xray+JSON+format+to+import+execution+results
https://docs.getxray.app/display/XRAYCLOUD/Using+Xray+JSON+format+to+import+execution+results

 'project': 'COM',
 },
 }

 self.data['tests'].append({
 'testKey': testkey,
 'comment': metric,
 'status': status,
 'results': [
 {
 'name': metric + ' for ' + name,
 'log': comment,
 'duration': 5,
 'status': status
 }
],
 'evidences': [
 {
 'data': self.injectCSVFile('example_exceptions.
csv'),
 'filename': 'performanceexceptions.csv',
 'contentType': 'text/csv'
 },
 {
 'data': self.injectCSVFile('example_failures.csv'),
 'filename': 'performancefailures.csv',
 'contentType': 'text/csv'
 },
 {
 'data': self.injectCSVFile('example_stats_history.
csv'),
 'filename': 'performancstatshistory.csv',
 'contentType': 'text/csv'
 },
 {
 'data': self.injectCSVFile('example_stats.csv'),
 'filename': 'performancstats.csv',
 'contentType': 'text/csv'
 }
]
 })

 info.update(self.data)
 self.data = info

 def writeToXrayResultFile(self):
 with open('xrayResults.json', 'w') as outfile:
 json.dump(self.data, outfile)

Let's look to each addition in more detail:

injectCSVFile - Method that will read the CSV that Locust generate by default, encode the
contents in Base64 and return the corresponding string
appendToXrayResult - This method will create the Xray Json file with proper structure by adding
information in the right places (check the Xray documentation regarding the Xray Json report)
writeToXrayResultFile - Method that will write the Xray Json to a file in order to be available for
processing after the Test as finished

Now when we execute the tests we will have the CSV files produced by Locust and one extra file named "
" that will have all relevant information in a way that Xray will ingest this file and create xrayResults.json

the corresponding Test Execution with details.

On example of the Xray Json file is:

xrayResults.json

{"info": {"summary": " Perf test", "description": "Perf test", "project":
"COM"}, "tests": [{"testKey": "COM-160", "comment": "percentile_90",
"status": "FAILED", "results": [{"name": "percentile_90 for /login",
"log": "percentile_90 for '/login' is 720.0, but expected it to be better
than 5", "duration": 5, "status": "FAILED"}, {"name": "percentile_90 for
/reserve.php", "log": "percentile_90 for '/reserve.php' is 600.0, but
expected it to be better than 5", "status": "FAILED"}, {"name":
"percentile_90 for /purchase.php", "log": "percentile_90 for '/purchase.
php' is 630.0, but expected it to be better than 5", "status": "FAILED"}],
"evidences": [{"data": "Q291bnQsTWVzc2FnZSx...UcmFjZWJhY2ssTm9kZXMNCg==",
"filename": "performanceexceptions.csv", "contentType": "text/csv"},
{"data": "TWV0aG9kLE5hbWUsRX...Jyb3IsT2NjdXJyZW5jZXMNCg==", "filename":
"performancefailures.csv", "contentType": "text/csv"}, {"data":
"VGltZXN0YW1wLFVzZ...yMzExDQo=", "filename": "performancstatshistory.csv",
"contentType": "text/csv"}, {"data": "VHlwZSxOYW1lLF...JlcXVlc3QgQ291b==",
"filename": "performancstats.csv", "contentType": "text/csv"}]},
{"testKey": "COM-159", "comment": "rps", "status": "FAILED", "results":
[{"name": "rps for /login", "log": "rps for '/login' is
18.366666666666667, but expected it to be better than 500", "duration": 5,
"status": "FAILED"}, {"name": "rps for /reserve.php", "log": "rps for '
/reserve.php' is 19.559322033898304, but expected it to be better than
500", "status": "FAILED"}, {"name": "rps for /purchase.php", "log": "rps
for '/purchase.php' is 19.559322033898304, but expected it to be better
than 500", "status": "FAILED"}], "evidences": [{"data":
"Q291bnQsTWVzc2FnZSx...UcmFjZWJhY2ssTm9kZXMNCg==", "filename":
"performanceexceptions.csv", "contentType": "text/csv"}, {"data":
"TWV0aG9kLE5hbWUsRXJyb3IsT...2NjdXJyZW5jZXMNCg==", "filename":
"performancefailures.csv", "contentType": "text/csv"}, {"data":
"VGltZXN0YW1wLFVzZXIgQ291...zExDQo=", "filename": "performancstatshistory.
csv", "contentType": "text/csv"}, {"data": "VHlw...IwMDANCg==",
"filename": "performancstats.csv", "contentType": "text/csv"}]}]}

This is just an example of one possible integration, you can reuse it or come up with one that better
suites your needs.

Graphana & Graphite
Most of the time the reports and logs generated by performance tests are not human friendly, either by
the number of results or because they are hard to read, even during the test execution it is hard to
understand if it is going as expected or not.

In order to provide a way to visualize those results in (known as the open observability Graphana
platform) we have extended Locust and registered a listener that will ship the logs to Graphite (time
series database).

We have followed the and, as described there, we use a Docker image to run an BlazeMeter tutorial
instance of Graphite and Graphana where we can validate our local performance tests, for that use the
image present here:

git clone https://github.com/kamon-io/docker-grafana-graphite.git

Once you have extracted the contents, enter the directory and run:

make up

This command will start and Docker instance of Graphana in localhost:80 and of Graphite in localhost:81

https://grafana.com/
https://www.blazemeter.com/blog/locust-monitoring-with-grafana-in-just-fifteen-minutes

We have extracted the code in a class in order to be easily used in your tests, the python script that have
resulted from that extraction is below

GraphanaPlugin

class GraphanaPlugin():
 sock = None
 request_success_stats = [list()]
 request_fail_stats = [list()]

 def __init__(
 self,
 env: locust.env.Environment,
):
 self.sock = socket.socket()
 self.sock.connect(("localhost", 2003))

 self.env = env
 self.errors = []

 events = self.env.events
 events.request_success.add_listener(self.hook_request_success)
 events.request_failure.add_listener(self.hook_request_fail)
 atexit.register(self.exit_handler)
 events.quitting.add_listener(self.exit_handler)

 def hook_request_success(self, name, response_time, **_kwargs):
 message = "%s %d %d\n" % ("performance." + name.replace('.', '-'),
response_time, time.time())
 self.sock.send(message.encode())

 def hook_request_fail(self, request_type, name, response_time,
exception, **_kwargs):
 self.request_fail_stats.append([name, request_type, response_time,
exception])

 def exit_handler(self, environment):
 self.sock.shutdown(socket.SHUT_RDWR)
 self.sock.close()

In more detail we can see that we have created a socket connected to the default port of the Graphite
tool and two lists with the successful requests and the failed ones, the way we manage to obtain those is
by plugin two listeners in Locust:

events.request_success.add_listener(self.hook_request_success)
events.request_failure.add_listener(self.hook_request_fail)

In order to use this new class in our Locust tests we must add these lines to our test script

 @events.init.add_listener
 def graphana_init(environment, **_kwargs):
 GraphanaPlugin(env=environment)

Finally we must add the following template in Graphana to define the dashboard that will enable us to
see the execution details, BlazeMeter blog also refers to this template and made it available . Once it here
is imported in Graphana it will create a new dashboard.

With all of this in place we can execute the tests again and check in Graphana (and in Graphite) all the
requests being made:

https://github.com/BushnevYuri/BlazeMeterArticlesExamples/blob/master/Locust%20Grafana%20Monitoring/GrafanaDashboardExample.json

Notes:

By default it will execute tests for the 3 browser types available (that is why we are forcing to
execute only for one browser)
By default all the tests will be executed in headless mode
Folio command line will search and execute all tests in the format: "**/?(*.)+(spec|test).[jt]s"
In order to get the Junit test report please follow this section

Integrating with Xray
As we saw in the above example, where we are producing Xray Json reports with the result of the tests,
it is now a matter of importing those results to your Jira instance, this can be done by simply submitting
automation results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for
Jenkins) or using the Jira interface to do so.

In this case we will show how to import via the API.

API

Once you have the report file available you can upload it to Xray through a request to the REST API
.endpoint for Xray Json

Xray Json results

The API request we will use, as we have generated an Xray Json report, will be the one to import Xray
Json results.

curl -H "Content-Type: application/json" -X POST -u USERNAME:PASSWORD --
data '@xrayResults.json' 'http://YOUR_SERVER_URL/rest/raven/1.0/import
/execution'

With this command we are creating a new Test Execution that will have the results of the Tests that were
executed.

Once uploaded the Test Execution will look like the example below

https://github.com/microsoft/playwright-test/blob/master/README.md#export-junit-report
https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAY720/Import+Execution+Results+-+REST

With Title and Description we have defined in the code and linked to the Tests we have created
beforehand to hold Performance results.

In order to check the details we click on the details icon next to each Test (below the red arrow in the
screenshot), this will take us to the Test Execution Details Screen

In the details we have the following relevant information:

Execution Status - Failed, this indicates the overall status of the execution of the P90
Performance Tests
Evidence - All CSV files produced by Locust to help understand the failure are added as
evidences for future analysis
Comment - Shows the performance indicator we are validating
Results - Detailed results of each endpoint validated with information of the KPI's defined and
why they were considered failed.

Bringing the information of performance tests to your project will allow a complete view over the Testing
process and bring that visibility up front for the team to have all the elements necessary to deliver a
quality product.

Tips
after results are imported in Jira, Tests can be linked to existing requirements/user stories, so
you can track the impacts on their coverage.
results from multiple builds can be linked to an existing Test Plan, to facilitate the analysis of
test result trends across builds.
results can be associated with a Test Environment, in case you want to analyze coverage and
test results by that environment later on. A Test Environment can be a testing stage (e.g. dev,
staging, prepod, prod) or a identifier of the device/application used to interact with the system (e.
g. browser, mobile OS).

References
https://locust.io/
https://docs.locust.io/en/stable/what-is-locust.html
https://blazedemo.com/

https://locust.io/
https://docs.locust.io/en/stable/what-is-locust.html
https://blazedemo.com/

	Performance and load testing with Locust

