Testing web applications using Cypress

Owdnaieywou'll learn
Prerequisites
* |ntegrathgDefin&tegts using Cypress
o ®ARLN the test and push the test report to Xray
* ValiomtelipndiraNhatdbeltest results are available
o Jira Ul
® Tips
* References

Source-code for this tutorial

® code is available in GitHub

Overview

Cypress is a JavaScript based testing framework for test automation. Cypress is often compared to
Selenium, but it is different; unlike Selenium that is executed outside of the browser Cypress is executed
within it, in the same run loop as your application.

Cypress runs in a NodeJS server process that allows Cypress and the NodeJS server to constantly
communicate, synchronize, and perform tasks on behalf of each other. This provides Cypress the ability

to respond to the application's events in real time, and at the same time work outside of the browser for
tasks that require a higher privilege.

Prerequisites

For this example we will use Cypress to write tests that aim to validate the Cypress todo example.
We will need:

® Access to a Cypress todo example site that we aim to test
® Cypress installed in your machine

To start using the Cypress please follow the Get Started documentation.

The tests consists in validating the operations over todo's elements of the Cypress todo example, for that
we have defined several tests to:

Validate that we can add new todo items;

Validate that we can check an item as completed;

Validate that we can filter for completed/uncompleted tasks;
Validate that we can delete all completed tasks.

The target web application is a simple "todos" made available by Cypress.

https://www.cypress.io/
https://github.com/microsoft/playwright-test/blob/master/README.md
https://example.cypress.io/todo
https://example.cypress.io/todo
https://www.cypress.io/
https://www.cypress.io/
https://docs.cypress.io/guides/getting-started/installing-cypress
https://example.cypress.io/todo
https://github.com/Xray-App/tutorial-js-cypress

todos

Pay electric bill

Walk the dog

2 itemns left Al Active Complated

TodoMVC

Each of these tests will have a series of actions and validations to check that the desired behavior is
happening as we can see below:

todo.cy.js

descri be(' exanple to-do app', () => {
bef oreEach(() => {
cy.visit(Cypress.config(' baseUl"))

b

it('can add new todo itens', () => {
const newitem = ' Feed the cat’
cy.get('[data-test=newtodo]').type(${newitent{enter}")

cy.get('.todo-list Ii")
.shoul d(' have.l ength', 3)
.last()

.shoul d(' have.text', newltem

9]
it('can check an itemas conpleted , () => {
cy.contains('Pay electric bill")
. parent ()
.find("input[type=checkbox]")
. check()
cy.contains('Pay electric bill")
.parents('li")
.shoul d(' have. cl ass', 'conpleted')
9]

context('with a checked task', () => {
bef oreEach(() => {

cy.contains('Pay electric bill")
. parent ()
.find('input[type=checkbox]")
. check()
b

it('can filter for unconpleted tasks', () => {
cy.contains(' Active').click()

cy.get('.todo-list li")
.shoul d(' have.length', 1)
first()

.shoul d(' have.text', 'Walk the dog')

cy.contains('Pay electric bill").should('not.exist")

1}

it('can filter for conpleted tasks', () => {
cy.contains(' Conpleted).click()

cy.get('.todo-list li")
.shoul d(' have.length', 1)
first()
.shoul d(' have.text', 'Pay electric bill")

cy.contains('Wal k the dog').shoul d(' not.exist")
b

it('can delete all conpleted tasks', () => {
cy.contains('Cear conpleted).click()

cy.get('.todo-list li")
.shoul d(' have.l ength', 1)
.shoul d(' not. have.text', 'Pay electric bill")

cy.contains(' Clear conpleted').should('not.exist')
1}
b
19

The tests are simple but let's look into two diferences that allow a little more control, the first one is the
possibility to use hooks like bef or eEach to, as the name implies, execute some operations before each
test execution. In this example we are accessing the target page before each test avoiding repeating this
instruction in each test.

beforeEach

bef oreEach(() => {
cy.visit('https://exanple.cypress.io/todo')
}

The other one helps in the test organization and have a direct effect on how the results will be written in
the result file, in our case we are using cont ext (but we could use descri be or speci fy). This will
group the tests beneath into the same testsuite.

context

context('with a checked task', () =>{

These tests are defined to validate the application ability to manage todo's by accessing the Cypress
todo example and performing operations that will generate an expected output.

Once the code is implemented it can be executed with the following command:

npx cypress run

The results are immediately available in the terminal.

cypress/e2e/*

Running: todo.cy. js

(Results)

(Run_Finished)

+ todo.cy.js

v ALL sp P

In this example, all tests have succeed, as seen in the previous terminal screenshot. It generates the
following JUnit XML report.

https://example.cypress.io/todo
https://example.cypress.io/todo

Junit Report

<?xm version="1.0" encodi ng="UTF-8"?>
<t estsuites name="Mcha Tests" tine="4.404" tests="6" failures="0">
<testsuite name="Root Suite" tinestanp="2023-01-30T17:46:57" tests="0"
file="cypress/e2e/todo.cy.js" tine="0.000" failures="0">
</testsuite>
<t estsuite nane="exanpl e to-do app" tinestanp="2023-01-30T17: 46: 57"
tests="3" tinme="0.000" failures="0">
<t estcase nane="exanpl e to-do app displays two todo itens by default"”
time="0.842" classnane="di splays two todo itens by default">
</testcase>
<t estcase nane="exanpl e to-do app can add new todo itens" tinme="0.477"
cl assnane="can add new todo itens">
</testcase>
<t est case nane="exanpl e to-do app can check off an item as conpl eted"
time="0.267" classnane="can check off an item as conpleted">
</testcase>
</testsuite>
<testsuite name="with a checked task" timestanp="2023-01-30T17: 47: 00"
tests="3" tinme="1.060" failures="0">
<t est case nane="exanple to-do app with a checked task can filter for
unconpl et ed tasks" time="0.345" classnane="can filter for unconpleted
tasks" >
</testcase>
<testcase nane="exanple to-do app with a checked task can filter for
conpl eted tasks" time="0.350" classnanme="can filter for conpleted tasks">
</testcase>
<testcase nane="exanpl e to-do app with a checked task can delete al
conpl eted tasks" time="0.341" classnane="can delete all conpleted tasks">
</testcase>
</testsuite>
</testsuites>

Notes:

® You can invoke Cypress locally and use it to assist you to write and execute tests with: npx
cypress open

® Use cypress. config.j s todefine configuration values such as taking screenshots,
recordings or the reporter to use (more info here).

® Different parameters can be used in the command line (more info here)

® We are using JUnit reporter but others are available (more info here)

Integrating with Xray

As we saw in the previous example, where we are producing JUnit reports with the test results. It is now
a matter of importing those results to your Jira instance; this can be done by simply submitting
automation results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for
Jenkins), or using the Jira interface to do so.

API

API

Once you have the report file available you can upload it to Xray through a request to the REST API
endpoint for JUnit, and for that the first step is to follow the instructions in v1 or v2 (depending on your
usage) to obtain the token we will be using in the subsequent requests.

https://docs.cypress.io/guides/references/configuration
https://docs.cypress.io/guides/guides/command-line
https://docs.cypress.io/guides/tooling/reporters
https://docs.getxray.app/display/XRAY400/Import+Execution+Results+-+REST
https://docs.getxray.app/display/XRAY400/Import+Execution+Results+-+REST
https://docs.getxray.app/display/XRAY/v1.0
https://docs.getxray.app/display/XRAY/v2.0

JUnit XML results

We will use the API request with the definition of some common fields on the Test Execution, such as the
target project, project version, etc.

In the first version of the API, the authentication used a login and password (not the token that is used in
Cloud).

curl -H "Content-Type: nultipart/formdata" -u admin:admn -F "fil e=@ odo-
resul ts.xm " "http://<LOCAL_JI RA_I NSTANCE>/rest/raven/ 2.0/ i nport/execution
/junit?proj ect Key=XT& est Pl anKey=XT- 401’

With this command we are creating a new Test Execution in the referred Test Plan with a generic
summary and six tests with a summary based on the test name.

Xray Tutorials / XT-402

Execution results - todo-results.xml - [1675182946651]

#Edt QComment Assign More v ToDo InProgress Done Admin v
~ Details
[5] Test Execution (D (view Workflow)
O Trivial Unresolved
None
XT-401
None
~ Description
Execution results imported from external source
~ Tests
Add Tests v [
Overall Execution Status
PASS
Total Tests: 5
= Fiter(s)
B Show 100 v]entries Columns ~
Rank Key TestType #Req #D: Assigy taset Stat
example to-
doapp can Xpand
T- i
1 xT-403 2000 Generic 0 0 I Admin >
todo items.
example to-
doapp can
Xpand
XT-404 checkan neri
0 2 0: check Generic 0 0 1T Admin >
completed
example to-
o app with
a checked
Xpand
0 s XT-405 task can Generic 0 0 1T Admin >

fiter for
uncompleted
tasks

Jira Ul

Jira Ul

Create a Test Execution linked to the Test Plan that you have.

Xray Tutorials / XT-401
tutorial-js-cypress
#Edit QComment Trigger Jenkinsbuild More v ToDo InProgress Done Admin v
v Details
Type: & Test Plan Status: (View Workflow)
Priority: O Trivial Resolution: Unresolved
Labels: None
~ Description
Click to add description
“ Tests
Add Tests v v ‘Test Plan Board
Altests
Overall Execution S
winsas |
5enss
Total Tests: 5
= Fiert)
Show[10 v entries. All Environments ~ Columns v
Key Summary Requirements #Test Executions Issue Assignee Test Type Latest Status
example to-do app.
xT- Xpand 1T
> n ad 1 neric I
Ob o cmadnewion Soand Generic
exampl to-do app
e X Xpand IT
O Pass]
ow a0a " check an item 1 Admin Generic

as completed

Fill in the necessary fields and press "Create"

Create Issue

Project*

Issue Type*

General

Summary*

Description

Reporter*

Assignee

Priority
Affects Version/s
Fix Versions

Original Estimate

Remaining Estimate

Component/s

Attachment

{3 Configure Fields v

Xray Tutorials (XT)

[Test Execution

Test Execution Details

Test Execution for Test Plan XT-401

Stylev B I U Av v

@v @ +v

Visual ~ Text

Xpand IT Admin
Start typing to get a st of possible matches.
Xpand IT Admin
Assign to me
O Trivial

None

None
(eg. 3w 4d 12h) @

The original estimate of how much work is involved in resolving this issue.
(eg. 3w 4d 12h) @

An estimats of how much work remains untilthis issue will bs resolved

None

3 Drop files to attach, or browse.

Redirect to Test Execution

reate [Necht]

Open the Test Execution and import the JUnit report

Xray Tutorials / XT-408.

Test Execution for Test Plan XT-401

#eit Qcomment Assion [N Tovo mnProgess Done Admin v

~ Details Log work
Type) Test Exect gt Board Status: (View Workfiow)
priorty Ol L ron Resolution: Unresolved
Labels None
Test Plan xr-a01 RanktoBottom
Test Environments: None Archive

) Attach fles

+ Description

Click to add description Attach Sereenshot
Voters
B Tosts Stop watehing

Add Tests v i Watchers

Create sub-task
Overall Execution Status

Convert to sub-task

—
5 Move
TO0DO

Link

Total Tests: 5 Clone.

= Fiters) tapels

Delete

@
<

show 100 entries Columns ~
Reset Defect Count
ARank ¢ Key s teq #Def Assignee Dataset © Stats
Export to Cucumber
% Import Execution Results
do Xpar

T e [oo] >

ade Export Test Runs to CsV [

100w mems

Choose the results file and press "Import"

Import Execution Results

Choose file | No file chosen

The file with the execution results for the Test Execution.

Import Cancel

The Test Execution is now updated with the test results imported

. (Kray Tutorialg)/ XT-408
Test Execution for Test Plan XT-401

#Edit QComment Assign More v ToDo InProgress Done Admin v

v Details
Type: 5] Test Execution Status: (View Workfiow)
Priority: O Trivial Resolution: Unresolved
Labels: None
Test Plan XxT-401
Test Environments: None

~ Description
Click to add descrition

~ Tests
Add Tests v IS

Overall Execution Status

Souss

Total Tests: §

= Fiters)

28 Show (100]

ARank Key Summary ¢ TestType #Req #Def Assignee Dataset © Status

entries Columns +

example to-
do app can
add new
todo items.

xpand
) - -
u} 1 XT-403 Generic o o 1T Admin »

example to-
doapp can Xpand
- n i [pass]
o 2 XT-408 :::‘c:: Generic 0 o IT Admin "
completed
example to-
do app with
achecked Xpand
0 s XT-405 taskcan Generic 0 o T Admin ST >

filter for

Tests implemented using Cypress will have a corresponding Test entity in Xray. Once results are
uploaded, Test issues corresponding to the Cypress tests are auto-provisioned, unless they already
exist.

Xray Tutorials / XT-403
example to-do app can add new todo items

#Edt QComment Assign Morev ToDo InProgress Done Admin v.

~ Details
Type: @ Test Status: (View Workfiow)
Priorty. O Trivial Resolution: Unresolved
Labels None

~ Deseription

Click to add description
 Test Details

Type: Generic

Definition: can add new todo items.example to-do app can add new todo items

 Pre-Conditions

“This test is not associated with Pre-Conditions yet.

Add Pre-Conditions v

v Test Sets
‘This test is not associated with Test Sets yet.

Add Test Sets

v TestPlans

Add Test Plans

224 Show[10_] entries Columns +
Koy Summary Tost Plan Status
O xr-401 tutorial-s-cypress —
Showing 10 10f 1 entries. First Previous [l Next Last

Xray uses a concatenation of the suite name and the test name as the the unique identifier for the test.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed using Cypress.

{ray Tutorials) / XT-402
Execution results - todo-results.xml - [1675182946651]

#Edt QComment Assign More v ToDo InProgress Done Admin v

v Details
Type 5] Test Execution Status: (View Workfiow)
Prioity: O Trivial Resolution: Unresolved
Labels None
Test Plan XT-401
Test Environments: None

~ Description
Execution results imported from external source

v Tests
Add Tests - [

Overall Execution Status

5 PASS

Total Tests: §

= Fines)
(024 Show[100v]entries Columns ~
SRank CKey ©Summary TestType dReq #Def Assignee Dataset Status
example to-
doapp can Xpand
o X403 PPN Generic 0 0 v >
todo tems.
example to-
doapp can
. Xpand
(- i [pss]
o 2 XT-404 checkan Generic 0 0 v >
item as
completed
example to-
do app with
achecked
Xpand
¢ - i [s]
0 s XT-405 taskcan Generic 0 0 v >

fittar for

Detailed results, including logs and exceptions reported during execution of the test, can be seen on the
execution screen details of each Test Run, accessible through the Execution details:

Xray Tutorals | XT-402

Execution results - todo-results.xml - [1675182946651]

#Eit QComment Assign Moev ToDo InProgress Done Admin v <
© Details “ Xporter
N 8 st Exccution Status: D (view Workfiow) XrayTes
© Trval Resolution: Unresolved
None Docx
xr-401 -
Nore Sewor
Description « People
Execution resuls imported from extarnal source Xpane
Xpanc
“ Tests o
Watchers @son
o © Dates
28 minut
jpdated 28 minute

< Agie

View on Board

As we can see here:
e —

example to-do app can add new todo items

SesOn INZIEIPUE O eI 6350

~ ExcutionDefcts (0) © ~ rocution Eidence (0] ©

Tips

® after results are imported, in Jira Tests can be linked to existing requirements/user stories, so
you can track the impacts on their coverage.

® results from multiple builds can be linked to an existing Test Plan, to facilitate the analysis of
test result trends across builds.

® results can be associated with a Test Environment, in case you want to analyze coverage and
test results by that environment later on. A Test Environment can be a testing stage (e.g. dev,
staging, preprod, prod) or a identifier of the device/application used to interact with the system
(e.g. browser, mobile OS).

References

® https://www.cypress.io/
® https://docs.cypress.io/guides/overview/why-cypress

https://www.cypress.io/
https://docs.cypress.io/guides/overview/why-cypress

	Testing web applications using Cypress

