
Advanced N-way Constraints

Overview
Basics - New Functions

All()
Some()

Advanced Rule Composition
Example 1
Example 2

Overview
One of our features is Constraints which can be used to exclude invalid or irrelevant combinations of parameter values from the Scenarios table. Advanced
N-way constraints (where N can be 2 or higher) make it possible to create dependencies across any number of parameters which should be a significant
time saver when defining complex rules and should expand your ability to apply our tool to highly conditional workflows.

The summary is below:

The advanced N-way constraints can only be created in the bulk editor.

One “Net New” grouping function - all().

One “Efficiency Improvement” grouping functions - some().

You can use these grouping functions on the left side of any constraint and on the right side of all but the >> skip constraint. The order of
parameters within the function does not matter.

You cannot use more than one grouping function per side of the constraint, but you can use two functions per rule (see “Advanced Rule
Composition” section below).

The number of involved parameters is not limited.

Rules with these functions are not visually reflected in the Coverage Matrix or the Standard constraints view. I.e. the only artifacts for review are
the bulk editor and the Scenarios table.

As a separate part of this update, we have added the ability to leave comments in the Constraints bulk editor using the # syntax. It is valid when used:

as the first symbol on a line - to indicate that the whole line is a comment,

after the valid constraint syntax - to indicate that the rest of the line is a comment.

Basics - New Functions
Note: we are using the same set of parameters throughout the article, but that does not mean rules would co-exist in the same model, at the same time.
Treat each example as an isolated constraint.

All()

This is a “Net New” function because implementing this rule type is pretty much impossible via other methods. All() provides a logical “AND” operation
on values from more than one parameter.

Let’s take a look at the example from an insurance quoting application:

all(VIP[No] Student[No] Tier[Bronze, Silver]) <-> Discount[No]

This rule says “WHEN Vip is No AND Student is No AND Tier is Bronze or Silver, THEN, and ONLY THEN , (note the mutually-bound constraint type)
Discount should be No.”

I.e., there will be only 2 scenarios in the table where the Discount is No:

VIP Student Tier Discount

No No Bronze No

No No Silver No

When more than 1 value of a given parameter is included in the all() function (like with Tier above), of values will be treated as valid all combinations
triggers for the rule (see more in the “Advanced” section below).

Some()

This is an “Efficiency Improvement” function because even though implementing this rule type is possible via multiple lines without functions, it takes longer.

Some() is semantically equivalent to a on values from more than one parameter, for example:logical “OR” operation

some(VIP[Yes] Student[Yes] Tier[Gold, Platinum]) <-> Discount[Yes]

This rule says “WHEN Vip is Yes OR Student is Yes OR Tier is Gold or Platinum, THEN, and ONLY THEN (note the mutually-bound constraint type),
Discount should be Yes.”

I.e., some of the possible scenarios (depending on the coverage strength) where the Discount is Yes are:

VIP Student Tier Discount

Yes No Bronze Yes

No Yes Silver Yes

No No Gold Yes

Yes No Platinum Yes

Yes Yes Gold Yes

Advanced Rule Composition

As we have mentioned, two grouping functions can be used in the same rule, one on each side (except for the skip constraint, where the right side
behaves the same way it did before this release).

In this section, we will cover some of the trickier function combinations. Overall, mutually bound constraints with functions on both sides are the most
difficult to get right, so we recommend starting with invalid and bound relationships to get some practice.

Example 1

all(VIP[No] Student[No, N/A] Tier[Bronze, Silver]) (Discount[Yes] Reserved Seat[Yes]) != some

This rule says “WHEN Vip is No AND Student is No or N/A AND Tier is Bronze or Silver, THEN Discount cannot be Yes OR Reserved Seat cannot be Yes”

The following scenarios will be from the generated table as invalid:excluded

VIP Student Tier Discount Reserved Seat

No No Bronze Yes Yes

No No Bronze Yes No

No No Bronze No Yes

No N/A Bronze Yes Yes

No N/A Bronze Yes No

No N/A Bronze No Yes

No No Silver Yes Yes

No No Silver Yes No

No No Silver No Yes

No N/A Silver Yes Yes

No N/A Silver Yes No

No N/A Silver No Yes

Only the Discount = No AND Reserved Seat = No is the valid combination for the trigger in all(). Note that some(Discount[Yes] Reserved Seat[Yes]) still
includes the Yes/Yes combination.

Example 2

some(Coverage B[125k, 175k] Coverage C[100k]) -> all(Coverage A[200k] Coverage D[No])

This rule says “WHEN Coverage B is 125k or 175k OR Coverage C is 100k, THEN Coverage A should be 200k AND Coverage D should be No”

The following scenarios will be from the generated table as invalid (non-exhaustive list):excluded

Coverage B Coverage C Coverage A Coverage D

125k 100k 250k (i.e. NOT[200k]) No

175k 50k 200k Yes

225k 100k 250k (i.e. NOT[200k]) Yes

Note: we changed the order of columns for easier review

	Advanced N-way Constraints

