Testing APIs using Pact-js

Owdnaieywou'll learn
Prerequisites
® ConsunterDefidetiests using Pact-js
Pact Br@keRun the tests and push the test report to Xray
ProviderV¥aliakadesn Jira that the test results are available
Integrating with Xray
°© _API

" JUnit XML results
o Jira Ul .
Seurggecode for this tutorial

® References . L
® code is available in GitHub

Overview

The Pact family of frameworks provide support for Consumer Driven Contracts testing.

A Contract is a collection of agreements between a client (Consumer) and an API (Provider) that
describes the interactions that can take place between them.

Consumer Driven Contracts is a pattern that drives the development of the Provider from its Consumers
point of view.

Pact is a testing tool that guarantees those Contracts are satisfied.

Prerequisites

For this example we will use Pact-js, whith Mocha (test framework) and Chai (assertion library).

You can use the Pact flavour that is most suited with you, for more informations please check their
document page.

We will need:

* Node.js environment
® Docker

To start using the Pact please follow the Get Started documentation.

Consumer Validations

Consumer driven contract testing with Pact will allow you to validate the contracts between the consumer
and the provider sooner in the pipeline. This approach is driven by the consumer, so the provider
development will be defined by the consumer point of view.

In order to demonstrate this approach we have defined an API that consists in a Comic store with
operations to get all existent comics available or to fetch one particular comic. We have added also an
authentication mechanism based on the authorization header.

From the consumer point of view we are going to define the interactions that the consumer is expecting
from the provider using Pact-js. We will then run those interactions against a mocked provider. To
achieve these results we have defined the following classes that will represent the consumer API:

https://pact.io/
https://github.com/pact-foundation/pact-js
https://mochajs.org/
https://www.chaijs.com/
https://docs.pact.io/implementation_guides/cli
https://docs.pact.io/implementation_guides/javascript
https://github.com/Xray-App/tutorial-pact-js

Jconsumer.js

const express = require("express")
const request = require("superagent")
const server = express()

const get Api Endpoint = () => process.env. APl _HOST || "http://] ocal host:
8081"
const aut hHeader = {

Aut hori zation: "Bearer 1234",

}

/'l Fetch all comcs
/1 Com cs Service
const availableComics = () => {
return request
. get (" ${ get Api Endpoi nt () }/comnics/avail abl e*)
. set (aut hHeader)
.then(res => res. body)

}

/1 Find comics by their ID
const getComicsByld = id => {
return request
. get (" ${ get Api Endpoi nt()}/comics/ ${id}")
. set (aut hHeader)

.then(
res => res. body,
() => null

)

}

nodul e. exports = {
server,
avai | abl eConi cs,
get Comi csByl d,

}

consumerService.js

const { server } = require("./consuner.js")

server.listen(8080, () =>{
consol e. 1 og("Comics Service listening on http://1ocal hots: 8080")

H

And using Pact we have defined the expected iterations:

test/consumer.spec.js

const path = require("path")

const chai = require("chai")

const chai AsProni sed = require("chai-as-prom sed")

const expect = chai . expect

const { Pact, Matchers } = require("@act-foundati on/pact")
const { log } = require("console")

const LOG LEVEL = process.env.LOG LEVEL || "WARN'

chai . use(chai AsProm sed)
descri be("Pact", () =>{

const provider = new Pact ({
consuner: "e2e Consuner Exanple",

provider: "e2e Provider Exanple",

l og: path.resol ve(process.cwd(), "logs", "nockserver-integration.log"),
dir: path.resol ve(process.cwd(), "pacts"),

| ogLevel : LOG LEVEL,

spec: 2,

i3]

/1 Alias flexible matchers for sinplicity
const { eachLike, like, term iso8601DateTineWthMIlis } = Matchers

/] comc to match

const comc_to_match = {
id: 2,
title: "Batman: no return",
pages: 22

}

const MN.COMCS = 2

const com cBodyExpectation = {
id: like(1),
title: like("X-MEN'"),
pages: |ike(50)

}

/1 Define comcs |list payload, reusing existing object matcher

const comi cLi st Expectati on = eachLi ke(com cBodyExpectation, {
mn: M N_COM CS,

b

/1 Setup a Mock Server before unit tests run.
/1 This server acts as a Test Double for the real Provider API.
/1 We then call addlnteraction() for each test to configure the Mck
Service
/1 to act like the Provider
/1 It also sets up expectations for what requests are to cone, and wll
fail
/1 if the calls are not seen.
before(() =>
provi der.setup().then(opts => {
// Get a dynam c port fromthe runtine
process. env. APl _HOST = “http://local host: ${opts.port}"
b
)

/1 After each individual test (one or nore interactions)

/1 we validate that the correct request cane through.

/1 This ensures what we _expect_ fromthe provider, is actually

/1 what we've asked for (and is what gets captured in the contract)
afterEach(() => provider.verify())

/1 Configure and inport consuner AP
/] Note that we update the APl endpoint to point at the Myck Service
const {
avai | abl eComi cs,
get Comi csByl d,
} = require("../consuner")

/1 Verify service client works as expected.
/1
/] Note that we don't call the consumer APl endpoints directly, but
/1l use unit-style tests that test the collaborating function behaviour -
/1 we want to test the function that is calling the external service.
descri be("when a call to list all comcs fromthe Comc Service is
made", () => {
describe("and the user is not authenticated", () => {
before(() =>
provi der. addl nteracti on({

state: "is not authenticated",

uponReceiving: "a request for all comcs",

wi t hRequest: {

met hod: " GET",
path: "/com cs/avail abl e",

}
wi | | RespondWth: {
status: 401,
}
3]

)

it("returns a 401 unauthorized", () => {
return expect (avail abl eCom cs(conmic_to_match)).to. eventually. be.
rej ectedWt h(
" Unaut hori zed"
)
9]
b

describe("and the user is authenticated", () => {
descri be("and there are comics in the database", () => {
before(() =>
provi der. addl nteracti on({

state: "Has sone comics",

uponReceiving: "a request for all comcs",

wi t hRequest: {
met hod: " GET",
path: "/conics/avail abl e",
headers: { Authorization: "Bearer 1234" },

3
wi | | RespondWth: {
status: 200,
headers: {
"Cont ent - Type": "application/json; charset=utf-8",
}
body: com cLi st Expect ati on,
b

b
)

it("returns a list of comcs", done => {
const com csReturned = avail abl eConi cs()

expect (com csRet ur ned)
.notify(done)

}
19
}
b

descri be("when a call to the Comic Service is made to retreive a single
comc by ID', () =>{
describe("and there is an comic in the DBwith ID 1", () => {
before(() =>
provi der. addl nteracti on({

state: "Has an comic with ID 1",

uponReceiving: "a request for an comc with ID 1",

wi t hRequest: {
met hod: " GET",
path: term({ generate: "/comics/1", matcher: "/com cs/[0-9]+"

I

headers: { Authorization: "Bearer 1234" },

H

wi | | RespondWth: {
status: 200,
headers: {

"Content-Type": "application/json; charset=utf-8",

H
body: coni cBodyExpectati on,

o

}

)

it("returns the animal", done => {

const com csRetuned = get Comi csByl d(11)

expect (com csRet uned)
.to.eventual ly. have. deep. property("id", 1)
.notify(done)
b
b

describe("and there no comcs in the database", () => {
before(() =>
provider. addl nteracti on({

state: "Has no comics",

uponRecei ving: "a request for an comic with ID 100",

wi t hRequest: {
met hod: " GET",
path: "/com cs/ 100",
headers: { Authorization: "Bearer 1234" },

b
wi | | RespondWth: {
status: 404,
},
b

)

it("returns a 404", done => {
const coni cReturned = get Comi csByl d(100)

expect (com cRet ur ned)
.to.eventually.be.a("null")
.notify(done)
9]
b
b

/1 Wite pact files
after(() =>{
return provider.finalize()

b

In the above class we have defined a new Pact between a consumer, that we have named: "e2e
Consumer Example" and a provider named: "e2e Provider Example" (notice that we have also defined
other parameters such as: the log path and a log level).

descri be("Pact", () =>{
const provider = new Pact ({
consuner: "e2e Consuner Exanple",
provider: "e2e Provider Exanple",
l og: path.resol ve(process.cwd(), "logs", "nmockserver-integration.log"),
dir: path.resol ve(process.cwd(), "pacts"),
| ogLevel : LOG LEVEL,
spec: 2,

b

Before starting these validations we want to start a mock server (that will represent the provider) and
point our client to it.

before(() =>
provi der.setup().then(opts => {
/] Get a dynamic port fromthe runtine
process. env. APl _HOST = “http://local host: ${opts. port}"

}
)

Finally we need to define the various interactions this consumer expects from the provider. In our case
we have defined 4 interactions:

® when a call to list all comics from the Comic Service is made
© and the user is not authenticated
© and the user is authenticated
= and there are comics in the database
® when a call to the Comic Service is made to retrieve a single comic by ID
© and there is a comic in the DB with ID 1
© and there no comics in the database

In each of these we have defined a state that will define a desired state of the provider before executing
the test (this state name will be used afterwards in the provider to setup the expected state), we also
have defined the request details (such as method, path and possible headers) and the response
expected.

describe("and there no comics in the database", () => {
before(() =>
provi der. addl nteracti on({
state: "Has no comics",
uponRecei ving: "a request for an comic with ID 100",
wi t hRequest: {
met hod: " GET",
path: "/com cs/ 100",
headers: { Authorization: "Bearer 1234" },

},
wi | | RespondWth: {
status: 404,
o
}

)

Finally we will check if the expectation matches the answer obtained.
it("returns a 404", done => {
const comi cReturned = get Comi csByl d(100)
expect (com cRet ur ned)

.to.eventually.be.a("null")
.notify(done)

19

Once the code is implemented we can execute it with the following command:

npmrun test:consuner

This will generate an immediate result in the console showing the status of the tests:

> €2e@1.0.0 test:consumer /Users/cristianocunha/Documents/Projects/xray-pact
> mocha test/consumer.spec.js

Pact
when a call to list all comics from the Comic Service is made
and the user is not authenticated

and the user is authenticated
and there are comics in the database

when a call to the Comic Service is made to retrieve a single comic by ID
and there is a comic in the DB with ID 1

and there no comics in the database

A Junit report and the pact file are generated from the execution:

junit_consumer.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<t estsuites name="Mcha Tests" tine="1.1280" tests="4" failures="0">
<testsuite name="Root Suite" tinestanp="2022-02-16T14:50: 35" tests="0"
time="0.0000" failures="0">
</testsuite>
<testsuite nanme="Pact" tinestanp="2022-02-16T14:50: 35" tests="0" file="
[User s/ cristianocunha/ Docunent s/ Proj ect s/ xray- pact/test/consuner. spec.js"
ti me="0.0000" failures="0">
</testsuite>
<testsuite name="when a call to list all conmics fromthe Conmic Service
is made" timestanp="2022-02-16T14:50: 36" tests="0" file="/Users
/cristianocunha/ Docunent s/ Proj ect s/ xray- pact/test/consuner. spec.js" tinme="
0. 0000" failures="0">
</testsuite>
<testsuite nanme="and the user is not authenticated" tinestanp="2022-02-
16T14:50: 36" tests="1" file="/Users/cristianocunha/ Docunents/ Projects/xray-
pact/test/consuner.spec.js" tinme="0.0310" failures="0">
<t est case nanme="Pact when a call to list all comics fromthe Comic
Service is made and the user is not authenticated returns a 401
unaut hori zed" tinme="0.0120" cl assname="returns a 401 unaut hori zed">
</testcase>
</testsuite>
<testsuite nanme="and the user is authenticated" tinestanp="2022-02-16T14:
50: 36" tests="0" file="/Users/cristianocunha/ Docunents/ Proj ects/xray- pact
/test/consuner.spec.js" tine="0.0000" failures="0">
</testsuite>
<testsuite name="and there are conmics in the database" tinestanp="2022-
02-16T14: 50: 36" tests="1" file="/Users/cristianocunha/ Docunents/ Projects
/ xray-pact/test/consuner.spec.js" tine="0.0170" failures="0">
<t est case nane="Pact when a call to list all comics fromthe Conic
Service is made and the user is authenticated and there are comcs in the
dat abase returns a list of comics" time="0.0050" classnane="returns a |ist
of com cs">
</testcase>
</testsuite>
<testsuite name="when a call to the Comic Service is nade to retrieve a
single conmic by ID' tinestanp="2022-02-16T14:50: 36" tests="0" file="/Users
/ cristianocunha/ Docunent s/ Proj ect s/ xray- pact/test/consuner. spec.js" tinme="
0. 0000" failures="0">
</testsuite>
<testsuite nanme="and there is a conmic in the DB with ID 1" tinestanp="
2022-02- 16T14: 50: 36" tests="1" file="/Users/cristianocunha/ Docunents
| Proj ects/xray-pact/test/consumer.spec.js" tinme="0.0150" failures="0">
<t est case nane="Pact when a call to the Comic Service is nade to
retrieve a single conmic by ID and there is a comic inthe DBwith ID1
returns the aninmal" tine="0.0050" classname="returns the ani mal ">
</testcase>
</testsuite>
<testsuite nane="and there no com cs in the database" tinestanp="2022-02-
16T14: 50: 36" tests="1" file="/Users/cristianocunha/ Docunents/ Projects/xray-
pact/test/consuner. spec.js" tine="0.0210" failures="0">
<t est case nane="Pact when a call to the Comic Service is nade to
retrieve a single conmic by ID and there no comics in the database returns
a 404" tinme="0.0040" classnane="returns a 404">
</testcase>
</testsuite>
</testsuites>

e2e_consumer_example-e2e_provider_example.json

{

"consuner": {
" "e2e Consuner Exanple"

name" :

1,

"provider": {

nane": "e2e Provider Exanple"

b
"interactions": [
{
"description": "a request for all com cs",
"providerState": "is not authenticated",
"request": {
"met hod": "CGET",
"path": "/com cs/avail abl e"
b
"response": {
"status": 401,
"headers": {
}
}
3
{
"description": "a request for all com cs",
"providerState": "Has some conics",
"request": {
"met hod": "CET",
"path": "/com cs/avail abl e",
"headers": {
"Aut horization": "Bearer 1234"
}
b
"response": {
"status": 200,
"headers": {
"Content - Type": "application/json; charset=utf-8"
b
"body": [
{
"id"r 1,
"title": "X-MEN',
"pages": 50
b
{
"id" 1,
"title": "X-MEN',
"pages": 50
}
I
"mat chi ngRul es": {
"$. body": {
"mn": 2
b
"$. body[*].*": {
"match": "type"
b
"$. body[*].id": {
"match": "type"
b
"$. body[*].title": {
"match": "type"
},
"$. body[*] . pages": {
"match": "type"
}
}
}
b
{
"description": "a request for an comc with ID 1",
"providerState": "Has an comic with ID 1",

"request": {
"met hod": "CET",
"path": "/com cs/1",
"headers": {
"Aut hori zation": "Bearer 1234"

b

"mat chi ngRul es": {
"$. path": {
"match": "regex",
"regex": "\\/comcs\\/[0-9]+"
}
}
I
"response": {
"status": 200,
"headers": {
"Content-Type": "application/json; charset=utf-8"
I
"body": {
"idUro1,
"title": "X-MEN',
"pages": 50
}
"mat chi ngRul es": {
"$. body.id": {
"match": "type"
I
"$. body. title": {
"match": "type"
}

. body. pages": {
"match": "type"

}
b
{
"description": "a request for an comc with ID 100",
"providerState": "Has no com cs",
"request": {
"met hod": "CET",
"path": "/com cs/ 100",
"headers": {
"Aut hori zation": "Bearer 1234"
}
},
"response": {
"status": 404,
"headers": {
}
}
}
I,
"metadata": {
"pact Speci fication": {
"version": "2.0.0"
}
}

This concludes the consumer validations, next we need to share the pact file with the provider. There are
two ways to do this, either we send the file to the provider (in a shared directory or email) or we can use
the Pact Broker for it.

Pact Broker

The Pact broker is an open source tool that enables you to share your pacts and verification results
between projects. It is the recommended way forward for serious Pact development.

For our example we will use the Pact broker available in a Docker image. We have included a docker-
compose.yaml file in the solution, so to start it you just have to use the following command:

docker - conpose up

This option will require you to deploy, administer and host the broker yourself. If you would prefer a plug-
and-play option, you can use Pactflow.

Once the broker is up you can use the following command to push the pact to the broker:

npm run pact: publish

We can see in the output if the command was successful or not and an URL of the Broker.

To double check you can access the url of your broker and check that a new Pact was uploaded:

API Browser

Pacts
Search ‘Submit | Reset

Latest pact Webhook ~ Last

C " Provider N
onsumer rovider published status. verified

e2e Consumer Example e2e Provider Example Y] less than a minte ago Create

« 1

70f 1pacts

Notice that the column "Last Verified" is still empty because the provider has not yet validated this Pact
on his side.

Provider Validations

On the provider side we have defined the provider API with the following two classes:

provider.js

https://pactflow.io/

const express = require("express")

const cors = require("cors")

const bodyParser = require("body-parser")
const Repository = require("./repository")

const server = express()
server.use(cors())
server. use(bodyParser.json())
server. use(
bodyPar ser . url encoded({
ext ended: true,

9]

)

server.use((req, res, next) => {
res. header ("Content- Type", "application/json; charset=utf-8")
next ()

3]

server.use((req, res, next) => {
const token = req. headers["authorization"] ||

if (token !'== "Bearer 1234") {
res. sendSt at us(401) . send()
} else {
next ()
}
)

const comi cRepository = new Repository()

/1 Load default data into a repository
const inmportData = () => {
const data = require("./data/com csData.json")
dat a.reduce((a, v) => {
v.id = a +1
comi cRepository.insert(v)
return a + 1
}, 0)
}

/'l Get all comcs
server.get("/comics", (req, res) => {
res.json(com cRepository.fetchAll())

1}

/1 Get all available comics
server.get("/conmics/available", (req, res) => {
res.json(com cRepository.fetchAll())

1}

/1 Find an comic by ID
server.get("/comics/:id", (req, res) => {
const response = com cRepository.getByld(req.parans.id)
if (response) {
res. end(JSON. stringify(response))

} else {
res.witeHead(404)
res. end()

}

b
nodul e. exports = {
server,

i npor t Dat a,

comi cRepository,

}

providerService.js

const { server, inportData } = require("./provider.js")
i mport Dat a()

server.listen(8084, () => {
consol e.log("Comics Profile Service listening on http://1ocal host: 8084")

1}

To perform the pact validations we have defined the following class:

provider.spec.js

const { Verifier } = require("@act-foundation/pact")

const chai = require("chai")

const chai AsPromi sed = require("chai-as-pronsed")

chai . use(chai AsPromi sed)

const { server, inportData, com cRepository } = require("../provider.js")
const path = require("path")

server.|listen(8084, () => {
i mport Dat a()
consol e.l og("Comics Service listening on http://|ocal host: 8084")

1}

/1 Verify that the provider neets all consumer expectations
descri be("Pact Verification", () =>{
it("validates the expectations of Com cs Service", () => {
let token = "I NVALI D TOKEN'

let opts = {
provi der: "e2e Provi der Exanple",
| ogLevel : "DEBUG',
provi derBaseUrl: "http://1ocal host:8084",

requestFilter: (req, res, next) => {
consol e. | og(

"M ddl ewar e i nvoked before provider APl - injecting
Aut hori zati on token"
)
req. header s[" MY_SPECI AL_HEADER'] = "ny special val ue"

/1 e.g. ADD Bearer token
req. headers["aut hori zation"] = 'Bearer ' + token
next ()

b

st at eHandl ers: {

"Has no comcs": () =>{

com cRepository.clear()

token = "1234"

return Promi se.resol ve(' Comcs renpved to the db')
3
"Has sonme comics": () => {

token = "1234"

i mport Dat a()

return Pronise.resol ve(' Conmcs added to the db')
H
"Has an comic with ID1": () => {

token = "1234"

i mport Dat a()

return Pronise.resolve(' Conic added to the db")
H

"is not authenticated": () => {

token =
Prom se.resol ve(' I nvalid bearer token generated')
3
b

/| Fetch pacts from broker
pact BrokerUrl: "http://Iocal host: 8000",

/| Fetch from broker with given tags
consuner Versi onTags: ["master", "test", "prod"],

/] Enabl es "pendi ng pacts" feature
enabl ePendi ng: true,

pact Br oker User nane: "pact _wor kshop",
pact Br oker Passwor d: " pact _wor kshop",
publishVerificati onResult: true,
provi derVersion: "1.0.0",

}

return new Verifier(opts).verifyProvider().then(output => {
consol e. 1 og("Pact Verification Conplete!l")
consol e. | og(out put)
b
9]
)

Notice that we have defined that we need to fetch the pact from the broker and that we have defined "stat
e handlers" that are defining the provider state before the validations (remember that the names used
here must match the providerState defined in the consumer validations above).

In order to execute the provider validations we run the following command:

npmrun test: provider

The results appear in the console output as we can see, and are also recorded in a Junit file.

junit_provider.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<testsuites nane="Mycha Tests" tinme="0.7920" tests="1" failures="0">
<testsuite name="Root Suite" tinestanp="2022-02-16T15: 20: 34" tests="0"
ti me="0.0000" failures="0">
</testsuite>
<testsuite name="Pact Verification" timestanp="2022-02-16T15: 20: 34"
tests="1" file="/Users/cristianocunhal/ Docunents/ Projects/xray-pact/test
/ provider.spec.js" time="0.7910" failures="0">
<testcase nanme="Pact Verification validates the expectations of Comcs
Service" time="0.7890" classnanme="validates the expectations of Com cs
Servi ce">
</testcase>
</testsuite>
</testsuites>

Now when you access the broker you can see that the pact now is validated by the consumer and
provider for that combination of versions.

APl Browser

Search Submit || Reset
Latest pact Webhook Last
Consumer Provider T atest pac oo -
published status verified

e2e Consumer Example e2e Provider Example =Y:] 12 minutes ago Create 1 minute ago

«1»

70 1pacts

The broker will provide more info that only this view, if you want to know more please check the Pact docu
mentation.

Pact also has available a tool that will use the information in the broker to help decide if we can proceed
with the deployment or not called: can-i-deploy, more details of this functionality here.

Integrating with Xray

As we saw in the above example, where we are producing Junit reports with the result of the tests, it is
now a matter of importing those results to your Jira instance, this can be done by simply submitting
automation results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for
Jenkins) or using the Jira interface to do so.

In this particular case, as we have two Junit files we need to repeat the process for each result. The
importation of results is usually done in each API pipeline/process.

As the importation of the Junit results is the same, either if it is from the consumer or the provider
side, we will only exemplify the one from the consumer side.

API

API

Once you have the report file available you can upload it to Xray through a request to the REST API
endpoint, and for that the first step is to follow the instructions in v1 or v2 (depending on your usage) to
include authentication parameters in the following requests.

JUnit XML results

We will use the API request with the addition of some parameters that will set the Project to where the
results will be uploaded and the Test Plan that will hold the Execution results.

In the first version of the API the authentication uses a login and password (not the token that is used in
Cloud).

curl -H "Content-Type: nultipart/formdata” -u admn:adnmn -F
"file=@unit_consumer.xm " http://yourserver/rest/raven/1.0/inport
/ execution/junit?project Key=XT&t est Pl anKey=XT- 344

With this command we are creating a new Test Execution in the referred Test Plan with a generic
summary and four tests with a summary based on the test name.

https://github.com/pact-foundation/pact_broker
https://github.com/pact-foundation/pact_broker
https://github.com/pact-foundation/pact_broker-client#can-i-deploy
https://docs.getxray.app/display/XRAY/REST+API
https://docs.getxray.app/display/XRAY/REST+API
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST+v2

(ray Tutoriag)/ x7-304
tutorial-pact-js

#Edt QComment Assign More v

ToDo InProgress Done Admin v
~ Details
Type: & Test Plan Status:
Priority: O Trivial Resolution:
Labels: None

~ Description

Click to add description

~ Tosts
PR create Test Execution v

Overall Execution Status.

(X (Ve

Unresolved

w Workflow)

Test Plan Board

Loss

Total Tests: 4

Ky Summary Reauiroments #Test Executons
Pact when acal o st al comic from the
-
o e ic Service is made and the user s not 1
authenticated returns a 401 nauthorized
Pact when a call t st ll cormics from the
XT- Comic Service ismade and the use is
>
O™ 37 suthenticated and there are comics in the !

database returns a lst of comics.

Pact when a call to the Comic Service is

Shou[10] enties
tssue ssignee

Xpand IT
Admin

Xpand IT
Admin

All Environments +

Latest Status

Columns +

Jira Ul

Jira Ul

Create a Test Execution for the test that you have

Xray Tutorlals / XT-349

Pact when a call to the Comic Service is made to retrieve a single comic by ID and there no con

Edit ‘Q Comment Assign More v ToDo InProgress Done Admin v
@ oemis

Type: @ Test Status: (View Workflow)

Priority: O Trivial Resolution: Unresolved
> Description
v Test Details.

Type: Generic

New Test Execution

‘dependent)

Fill in the necessary fields and press "Create"

Create new test execution to run XT-349

Project: [@ Xray Tutorials v
summary® Ad-hoc execution for Pact when a call to the Comic Service is made to refffie
Assignee Xpand IT Admin v
Choose a user to assign the Test Execution
Priority & Blocker v
Start typing to get a list of possible matches or press down to select
Fix Version/s v
Start typing to get a list of possible matches or press down to select
Sprint v
Start typing to get a list of possible matches or press down to select

Test Environments v

Start typing to get a list of possible matches or press down to select
Each environment where the Test is to be executed

Revision
The system revision for the test execution

@ Execute Immediately

Create Cancel

Open the Test Execution and import the JUnit report

Xray Tutorials / XT-350
Ad-hoc execution for Pact when a call to the Comic Service is made to retrieve a single comic b
database returns a 404

sea Qoomnen nssin [To00 mrrogess Dane dmin v

~ Details Log work
Type: O TestExec! agile Board Status: (T (View Workflow)
priorty Blocker Resolution: Unresolved
v © Rank to Top
Labels: None
Rank to Bottom
Test Plan: None
Tost Environments: None Archive
. Attach files
> Description
Attach Screenshot
© Tests Voters
Add Tests v IS Stop watching
Watchers
—
Convert to sub-task
Troso
Move
Total Tests: 1 Link
Clone
iter(s)
Labels
Apoly Rark Delete Show[100 v entries Columns
Rak AKey ©S pesetDefectCount JPe #Req? #Def Assignee Dataset ¢ Status

PatExport to Cucumber

a Import Execution Results
X1-349 sin

FE

[a}
x
H

v

Export Test Runs to CSV|

in the database
retums 2 404

Fist previous il Next Last

Choose the results file and press "Import"

Import Execution Results

Import Execution Results
Choose file | No file chosen

The file with the execution results for the Test Execution.

Import Cancel

The Test Execution is now updated with the test results imported

- ion results - junit_ xml - [1645030976572]

#Edt QComment Assign More v ToDo InProgress Done Admin v

~ Detals
Type: O Test Execution Status: (View Workflow)
prioriy: © Trivial Resolution: Unresolved
Labels: None
Test Plan: XT-344
Test Environments: None

> Description

.

Overall Execution Status:

Loss

Total Tests: 4

= Fiter(s)

By vy Rk Show[T00%]entres Columns +

Rank 4 Key Summary TestType #Req #Def Assinee Dataset © Status

Pact when a cal to
tst il comics from
the Comic Service s
o XT-346 madeandtheuseris Generic O o ::‘"i"” [onss] IS
not authenticated mn
retums a 401
unauthorized
Pactwhena calto
tist il comics from
the Comic Senvice s

mad and the user s Xpand T
a 2 XT-347 authenticated and G o o Admin >

Tests implemented will have a corresponding Test entity in Xray. Once results are uploaded, Test issues
corresponding to the tests are auto-provisioned, unless they already exist.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed.

[R)) X Totorils / XT-347

Pact when a call to list all comics from the Comic Service is made and the user is authenticated a
database returns a list of comics

#Edt QComment Assign Morev ToDo InProgress Done Admin v

~ Details
Type: @ Test Status: (EEXTD (View Workflow)
prioriy: © Trivial Resolution Unresolved
Labels: None

> Description

~ Test Details
Type: Generic

Definition: returns a st of comics.Pact when a call tolst all comics from the Comic Service is made and the user is authenticated and

there are comics in the database returns a st of comics

> Pre-Conditions
> TestSets

> TestPlans

Detailed results, including logs and exceptions reported during execution of the test, can be seen on the
execution screen details of each Test Run, accessible through the Execution details:

pr—
o e = =

= = B P -m\‘ B
ey e
© ety wonteo

[——————

As we can see here:

and there are comics in the database retums a st of comics

A comment [r———) ~ o

Tips

® after results are imported, in Jira Tests can be linked to existing requirements/user stories, so
you can track the impacts on their coverage.

® results from multiple builds can be linked to an existing Test Plan, to facilitate the analysis of
test result trends across builds.

® results can be associated with a Test Environment, in case you want to analyze coverage and
test results by that environment later on. A Test Environment can be a testing stage (e.g. dev,
staging, prepod, prod) or a identifier of the device/application used to interact with the system (e.
g. browser, mobile OS).

References

https://github.com/pact-foundation/pact-js
https://docs.pact.io/
https://docs.pact.io/implementation_guides/javascript
https://pactflow.io/
https://github.com/pact-foundation/pact_broker

https://github.com/pact-foundation/pact-js
https://docs.pact.io/
https://docs.pact.io/implementation_guides/javascript
https://pactflow.io/
https://github.com/pact-foundation/pact_broker

	Testing APIs using Pact-js

