Testing using Selenium WebDriver and Gauge in Java

Overview

In this tutorial, we will "create” some acceptance tests using Gauge framework and import back the results to Xray.
We'll reuse a sample Java maven-based project having tests that make use of Selenium to drive a browser in a sample shop application.

In Gauge, specifications are used to describe acceptance tests for business cases.
A specification is a business test case which describes a particular feature of the application that needs testing. (Gauge team)

Specification of test scenarios is separate from their actual implementation. While the specification has a structure and proper syntax, the implementation
of steps can be done in one of the supported languages (e.g. Java, Ruby, C#, Javascript, Python).

Specifications may be done using steps or concepts (steps may be grouped together as a concept to define a unit of "business intent").
The idea is to have readable test scenarios and promote the reusability of steps/concepts.
Specifications typically live under a specs/ folder.

A clear Gauge overview may be found in Gauge's documentation site.

Requirements

® [nside the project folder, install Gauge's java plugin

gauge install java

® Inside the project folder, install the xm - r epor t plugin

gauge install xm-report

® A sample web admin shop must be installed; you can follow the instructions provided in Gauge's sample project to download the .war file. After
being downloaded, it may be easily started (it takes a few seconds to do so)

java -jar activeadni n-deno. war

Description

For this tutorial, we'll use a sample Java maven-based project provided by the Gauge team.
The project contains several tests, as part of distinct specifications.

Next, you may see an example of the Pl aceOr der . spec file, which contains two scenarios (i.e. tests): "Buy a book" and "Cart retains items until order is
placed".

https://gauge.org/
https://github.com/getgauge-examples/java-maven-selenium
https://docs.gauge.org/writing-specifications.html?os=macos&language=java&ide=vscode
https://docs.gauge.org/writing-specifications.html?os=macos&language=java&ide=vscode#concept
https://docs.gauge.org/overview.html?os=macos&language=java&ide=vscode
https://github.com/getgauge-examples/java-maven-selenium
https://bintray.com/artifact/download/gauge/activeadmin-demo/activeadmin-demo.war
https://github.com/getgauge-examples/java-maven-selenium
https://github.com/getgauge-examples/java-maven-selenium/tree/master/specs

specs/PlaceOrder.spec

Pl ace an Order

* Go to active admn store

Buy a book

* Log in with custoner name "ScroogeMduck" and "password"
* Place order for "Beginning Ruby: From Novice to Professional". The cart should now contain "1" itens
* Log out

Cart retains itens until order is placed

tags: customer

* Log in with custoner name "ScroogeMduck" and "password"
* Add "Begi nning Ruby: From Novice to Professional™ and the cart will now contain "1" iten{(s)
* Log out

* Log in with custonmer nane "ScroogeMcduck"” and "password”
* Add "The Wl |-G ounded Rubyist" and the cart will now contain "2" iten(s)
* Log out

The steps implementation is done in different classes (you may freely structure these classes).
The following code shows the associated implementation for the previous specification.
Two things should be mentioned though:

1. some steps (e.g. for login/logout) are implemented in other classes

2. as you can see, the previous specification does not use these "raw" steps as such; instead, it uses concepts detailed in a specific file (PlaceOrder.
cpt) as shown ahead

https://github.com/getgauge-examples/java-maven-selenium/blob/master/specs/concepts/PlaceOrder.cpt
https://github.com/getgauge-examples/java-maven-selenium/blob/master/specs/concepts/PlaceOrder.cpt

Isrcltest/java/PlaceOrder.java

i mport com t hought wor ks. gauge. St ep;

i mport org.openga. sel eni um By;

i mport org.openga. sel eni um WebDri ver;

i nport org. openga. sel eni um WebE! enent ;
import utils.driver.Driver;

inport java.util.List;

import static org.junit.Assert.assertEquals;
inmport static org.junit.Assert.assertTrue;

public class PlaceOrder {

@tep("Add item<itenr to the cart.")
public void addltenToTheBasket (String item {
WebDriver webDriver = Driver.webDriver;
webDriver. findEl ement (By.linkText(item)).click();
webDri ver. findEl ement (By.linkText("Add to Card")).click();
}

@5t ep(" Checkout now")
public void placeTheOrder () {
WebDriver webDriver = Driver.webDriver;
webDri ver. findEl ement (By. xpat h("//i nput [@al ue=' Checkout Now! ']")).click();

}

@t ep("Cart now contains <itemCount> nunber of itens")

public void cartNowContains(int nunberOfltens) {
WebDriver webDriver = Driver.webDriver;
Li st <WebEl enent > products = webDriver.findEl enents(By. xpath("//tabl e/tbody/tr"));
assert Equal s(nunber Of | t ems, products. si ze()-2);

specs/concepts/PlaceOrder.cpt

Created by sswaroop on 5/15/17

This is a concept file with follow ng syntax for each concept.

#

*

*

*

Checkout
Checkout now
Show a nessage "Thank you for your purchase! We will ship it shortly!"

Add <itenmr and the cart will now contain <itenCount> iten(s)
See itens available for purchase.

Add item<iten» to the cart.

Cart now contains <itenCount> nunber of itens

Pl ace order for <iten». The cart should now contain <itenctount> itens
See itens available for purchase.

Add <iten> and the cart will now contain <itentount> iten(s)

Checkout

Since we're using a maven-based project, tests can be run as usual (i.e. "mvn test"); otherwise, you could use the "gauge run

Note that we won't use Surefire to generate the JUnit XML report but we'll use Gauge's "xml-report" plugin instead.

mvn test

... command.

https://github.com/getgauge/xml-report

After running the tests and generating the JUnit XML report (e.g., result.xml), it can be imported to Xray (either by the REST API or through Import
Execution Results action within the Test Execution).

curl -H "Content-Type: nultipart/formdata” -u admn:adnmin -F "file=@eports/xm -report/result.xm"
http://jiraserver. exanple.comrest/raven/ 1. 0/inport/execution/junit?projectKey=CALC

A Test Execution will be created containing information about the executed scenarios.

o Calculator / CALC-5119

Execution results - result.xml - [1571179388588]

Edit C] Comment Assign = More ~ Close Issue = Reopen Issue Admin ~
Details
Type: 3 Test Execution Status: (View Workflow)
Affects Version/s: None Resolution: Fixed
Component/s: None Fix Version/s: None
Labels: None
Test Environments: None
Test Plan: None
Description

Execution results imported from external source

Tests

+ Add ~

Overall Execution Status

PASS 1 FAIL

Each scenario is mapped to a Generic Test in Jira, and the Generic Test Definition field contains the name of the specification concatenated with the
scenario name.

The Execution Details of the Generic Test contains information about the "Test Suite" (as per JUnit format), which in this case corresponds to the scenario
name with a prefix.

https://docs.getxray.app/download/attachments/122096690/result.xml?version=1&modificationDate=1698689488460&api=v2

Calculator / Test Execution: CALC-5119 / Test: CALC-5011

!] Export Test as Text A Return to Test Execution 4 Previous Next »
Buy a book
Execution Status PASS Assignee: Administrator Versions: -
Executed By: Administrator Revision: -
Started On: 15/0ct/19 11:43 PM (&) Finished On: 15/0ct/19 11:43 PM Tests environments: -
Comment Preview Comment | Execution Defects (0) Create Defect = Create Sub-Task = Add Defects |, Execution Evidence (0) Add Evidence = |,
e Execution Details
Test Description S
None
Test Details ”
Test Type: Generic
Results A
Context Error Message Duration Status
TestSuite 3 - Place an Order - 3sec

Sometimes you may use data tables in your specifications.

specs/CustomerLogout.spec

Cust onmer Log out

| nane| emai | | passwor d|

| John| j ohn. doe@xanpl e. conj passwor d|
| Jane| j ane. doe@xanpl e. conj passwor d|

* Go to active admn store

Custoner nust be able to | og out

* Sign up as <nane> with email <email> and <passwor d>
* Log out

In that case, the scenario will be executed multiple times (once per row) leading to multiple results in the JUnit XML report produced by the "xml-report"
plugin.

This, in turn, will lead to multiple Test issues being created.

Description

Execution results imported from external source

Tests

+ Add ~
Overall Execution Status

4 PASS 1 FAIL

TOTAL TESTS: 5

= Filter(s)
I Show 100 [entries Columns ~
4 Rank Key Summary Test Type #Req #Def Assignee Status

Customer

0O 1 ;::1L2C amt::ttziog Generic 0 0 Administrator FAIL P | e
out 1
Customer

@ 2 gg:LOC am;::ttt;?og Generic 0 0 Administrator [ZEEN P | oo
out 2

The unique identifier for the Test will be weak in the sense that it is composed of the specification plus the scenario name followed by a sequential number
(i.e. row number).

In other words, if at some point in time you change the table rows order, results can be reported against the wrong existing Test issue. This may be
avoided if you manually update the Generic Test Definition field with the proper row index before submitting results. A better way of identifying these
scenarios could be perhaps achieved and agreed with the xml-report plugin team.

Calculator / Test Execution: CALC-5119 / Test: CALC-5010

!] Export Test as Text . Return to Test Execution 4 Previous Next »
Customer must be able to log out 2
Execution Status . PASS Assignee: Administrator Versions: -
Executed By: Administrator Revision: -
Started On: 15/0cti19 11:43 PM (5] Finished On: 15/0ct/19 11:43 PM Tests environments: -
Comment Preview Comment |, Execution Defects (0) Create Defect = Create Sub-Task = Add Defects | «, Execution Evidence (0) Add Evidence |,
e Execution Details
Test Description A
None
Test Details A
Test Type: Generic /
7
Definition: Customer Log out.Customer must be able to log out 2 I
Results A

Context Error Message Duration Status

TestSuite 1 - Customer Log out = 8 sec “

https://github.com/getgauge/xml-report

References

https://gauge.org/
https://docs.gauge.org/index.html?os=macos&language=java&ide=vscode
https://github.com/getgauge/xml-report
https://github.com/getgauge-examples/java-maven-selenium

https://gauge.org/
https://docs.gauge.org/index.html?os=macos&language=java&ide=vscode
https://github.com/getgauge/xml-report
https://github.com/getgauge-examples/java-maven-selenium

	Testing using Selenium WebDriver and Gauge in Java

