Integration with GitLab

GitLab is a well-known CI/CD tool available on-premises and as SaaS.
Xray does not provide yet a plugin for GitLab. However, it is easy to setup GitLab in order to integrate it with Xray.

Since Xray provides a full REST API, you may interact with Xray, for submitting results for example.

® JUnit example

® Robot Framework example

® Cucumber example
© Standard workflow (Xray as master)
o VCS workflow (Git as master)

JUnit example

In this scenario, we want to get visibility of the automated test results from some tests implemented in Java, using the JUnit framework.

This recipe could also be applied for other frameworks such as NUnit or Robot.

We need to setup a Git repository containing the code along with the configuration for GitLab build process.

The tests are implemented in a JUnit class as follows.

CalcTest.java

package com xpand. j ava;

inport org.junit.After;
import org.junit.Before;
import org.junit. Test;

import static org.hantrest. CoreMatchers.is;
inport static org.junit.Assert.assertThat;

public class Cal cTest {

@efore
public void setUp() throws Exception {

}

@fter
public void tearDown() throws Exception {

}

@est

public void CanAddNunbers()

{
assert That (Cal cul ator. Add(1, 1), is(2));
assert That (Cal cul ator. Add(-1, 1), is(0));

@est

public void CanSubtract ()

{
assert That (Cal cul ator. Subtract (1, 1), is(0));
assert That (Cal cul ator. Subtract (-1, -1), is(0));
assert That (Cal cul ator. Subtract (100, 5), is(95));

@est

public void CanMil tiply()

{
assertThat (Cal cul ator. Mul tiply(1l, 1), is(1));
assertThat (Cal cul ator. Mul tiply(-1, -1), is(1));
assert That (Cal cul ator. Mul ti pl y(100, 5), is(500));

public void CanDi vide()

{
assertThat (Cal cul ator. Divide(1, 1), is(1));
assertThat (Cal cul ator. Divide(-1, -1), is(1));
assert That (Cal cul ator. Di vi de(100, 5), is(20));

}

@est

public void CanDoStuff ()

{
assertThat (true, is(true));

}

The GitLab configuration file . gi t | ab- ci . yri contains the definition of the build steps, including running the automated tests and submitting the results.

.gitlab-ci.yml

Use Maven 3.5 and JDK8
i mge: maven: 3. 5-j dk-8

vari abl es:

This will supress any downl oad for dependencies and plugins or upload nessages which would clutter the
consol e 1 0g.

“showDateTinme® will show the passed time in nilliseconds. You need to specify "--batch-node’ to nake this
wor k.

MAVEN_OPTS: "-Dmaven. repo. | ocal =.n2/repository -Dorg.slf4j.sinpleLogger.!|og.org.apache. maven.cli.transfer.
S| f 4) MavenTr ansf er Li st ener =\WWARN - Dor g. sl f 4] . si npl eLogger . showDat eTi ne=true -Dj ava. awt . headl ess=t rue"

As of Maven 3.3.0 instead of this you may define these options in *.nvn/maven.config so the sane config is
used

when running fromthe command |ine.

“install AtEnd” and "“depl oyAtEnd are only effective with recent version of the correspondi ng pl ugins.

MAVEN_CLI _OPTS: "--batch-nbde --errors --fail-at-end --show version -Dinstall At End=true -Ddepl oyAt End=t rue"

Cache downl oaded dependenci es and pl ugi ns between builds.
To keep cache across branches add 'key: "$Cl _JOB_REF_NAME"'
cache:
pat hs:
- .nR/repository

maven_bui | d:

script:
- echo "building ny anazing repo..."
- nvn test

- 'curl -H"Content-Type: nmultipart/formdata” -u $jira_user:$jira_password -F "file=@arget/surefire-
reports/ TEST-com xpand. j ava. Cal cTest.xm " "$jira_server_url/rest/raven/1.0/inport/execution/junit?
proj ect Key=CALC"'

- echo "done"

In order to submit those results, we'll just need to invoke the REST API (as detailed in Import Execution Results - REST).

However, we do not want to have the JIRA credentials hardcoded in GitLab's configuration file. Therefore, we'll use some secret variables defined in
GitLab project settings.

@ Please note

The user present in the configuration below must exist in the JIRA instance and have permission to Create Test and Test Execution Issues

https://docs.getxray.app/display/XRAY/Import+Execution+Results+-+REST

Y GitLab Projects v Groups Activity Milestones Snippets €3+~ Thisproject Search

General pipelines settings
J java-junit-calc
Update your CI/CD configuration, like job timeout or Auto DevOps.

& Overview
Runners settings
® Repository Register and see your runners for this project.

) Registry

Secret variables @

) Issues 0
D Variables are applied to environments via the runner. They can be protected by only exposing them to protected branches or tags.

™ 3 ; 0 You can use variables for passwords, secret keys, or whatever you want.
erge Requests

jira_password FARAAAAAK KA HKAAAAKFAK Protected °)
® ci/cp
jira_server_url FRRckR kR Protected ° [-)
™ wiki
\ jira_user B ———— Protected °)
% Snippets
o
Input variable ke Input variable value Protected
£ Settings P Y %
Members
Integrations Pipeline triggers
Repositor Triggers can force a specific branch or tag to get rebuilt with an API call. These tokens will impersonate their associated user
P y including their access to projects and their project permissions.

In. gitlab-ci.ynla"step" must be included in the maven_build section, that will use "curl" in order to submit the results to the REST API.

curl -H "Content-Type: nultipart/formdata" -u $jira_user:$jira_password -F "file=@arget/surefire-reports/ TEST-
com xpand. j ava. Cal cTest.xm " "$jira_server_url/rest/raven/ 1. 0/inport/execution/junit?projectKey=CALC'

We're using "curl" utility that comes in Unix based OS'es but you can easily use another tool to make the HTTP request; however, “curl" is provided in the
container used by GitLab.

Robot Framework example

In this scenario, we want to get visibility of the automated test results from some Ul tests implemented in Robot Framework (Python) together with
Selenium (using the "robotframework-seleniumlibrary"), and using Chrome for testing.

We need to set up a Git repository containing the code along with the configuration for GitLab build process.

The tests are implemented in Robot Framework .robot files as follows.

https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html

valid_login.robot

*** Settings ***
Docunent ati on A test suite with a single test for valid |ogin.

This test has a workflow that is created using keywords in
the inported resource file.

Resour ce resource. r obot

*** Test Cases ***

Valid Login
[Tags] U
Open Browser To Login Page
I nput User nane deno
I nput Password node

Subnit Credentials
Wl come Page Shoul d Be Open
[Tear down] Cl ose Browser

The GitLab configuration file . gi t | ab- ci . ym contains the definition of the build steps, including running the automated tests and submitting the resuilts,
as two different stages.

.gitlab-ci.yml

Oficial |anguage i mage. Look for the different tagged rel eases at:
https://hub. docker.comr/library/python/tags/
i mge: python:3.12.2

Change pip's cache directory to be inside the project directory since we can
only cache local itens.
vari abl es:

PI P_CACHE_DI R "$Cl _PRQIECT_DI R/ . cache/ pi p"

https://pip.pypa.iolen/stablel/topics/caching/
cache:
pat hs:
- .cachel/pip

st ages:
- execute_autonated_tests
- upload_test_results

bef ore_script:
- python --version ; pip --version # For debuggi ng
- pip install virtual env
- virtual env venv
- source venv/bin/activate
- pipinstall -r requirements.txt
- apt-get update

test:
stage: execute_autonated_tests
before_script: |
set -e
apt-get install -yqq unzip curl
Install Chrome & chronedriver
curl -sS -0 - https://dl.google.conlinux/linux_signing_key.pub | apt-key add -
echo "deb https://dl.google.conllinux/chrone/deb/ stable main" >> /etc/apt/sources.list.d/google.list
apt update &% apt install google-chronme-stable -y
wget -O /tnp/chromedriver.zip https://storage. googl eapi s. conf chrone-for-testing-public/121.0.6167.85/1inux64
/chromedriver-1linux64.zip
I's -la /tnmp/chronedriver.zip
unzip -j /tnp/chronedriver.zip chronedriver-Iinux64/chronmedriver -d /usr/local/bin/
nohup pyt hon denpapp/ server.py &

script: |

chronedriver -v &\

pip install -r requirements.txt && \

robot -x junit.xm -o output.xnl login_tests || true
allow_failure: true
artifacts:

pat hs:

- output.xn

when: al ways

upl oad_results_to_xray:
stage: upload_test_results
script:
- echo "uploading results to Xray..."
- 'curl -H"Content-Type: multipart/formdata" -u $XRAY_USERNAME: $XRAY_PASSWORD - F “fil e=@ut put . xm "
"$XRAY_SERVER URL/rest/raven/ 2.0/ i nport/execution/robot ?proj ect Key=$PROJIECT_KEY"'
- echo "done"
dependenci es:
- test

In order to submit those results, we'll just need to invoke the REST API (as detailed in Import Execution Results - REST).

https://docs.getxray.app/display/XRAY/Import+Execution+Results+-+REST

However, we do not want to have the Xray API credentials hardcoded in the GitLab's configuration file. Therefore, we'll use environment variables defined
in the project settings, including:

® XRAY_SERVER_URL: Jira's base URL

® XRAY_USERNAME: the username used in the REST API
® XRAY_PASSWORD: the password used in the REST API
® PROJECT_KEY: Jira project

@ Please note

The user associated with the Xray's APl key must have permissions to Create Test and Test Execution Issues.

Variables @

Variables store information that you can use in job scripts. Each project can define a maximum of 8000 variables. Learn more.

Variables can be accidentally exposed in a job log, or maliciously sent to a third party server. The masked variable feature can help reduce the risk of accidentally exposing
variable values, but is not a guaranteed method to prevent malicious users from accessing variables. How can | make my variables more secure?

Variables can have several attributes. Learn more.

* Protected: Only exposed to protected branches or protected tags.
* Masked: Hidden in job logs. Must match masking requirements.
« Expanded: Variables with $ will be treated as the start of a reference to another variable.

CI/CD Variables </> 4 Reveal values Add variable
T Key Value Environments Actions
PROJECT_KEY (% Frkkk [All (default) [2 V4
XRAY_PASSWORD (3% ook (3 All (default) (3 Va
XRAY_SERVER_URL [2 ARk [All (default) [Y
XRAY_USERNAME [¢ Frkrk [All (default) [2 V4

In.gitlab-ci.ynl a"step" must be included that will use "curl" in order to submit the results to the REST API, using the Xray/Jira credentials.

curl -H "Content-Type: nultipart/formdata" -u $XRAY_USERNAME: $XRAY_PASSWORD - F “fil e=@ut put . xnml "
"$XRAY_SERVER _URL/rest/raven/ 2.0/ i nport/execution/robot ?proj ect Key=$PROJIECT_KEY"

We're using "curl" utility that comes in Unix based OS'es but you can easily use another tool to make the HTTP request; however, "curl" is provided in the
container used by GitLab.

INEEESE I scrgio Freire / WebDemo / Pipelines | #1179717992

o 83 &
Update resource.robot
Q Search or go to... @ Passed Sergio Freire created pipeline for commit 576748f8 [%% finished 5 days ago
Project For master
W WebDemo latest @O 2 Jobs 211 (® 2 minutes 6 seconds, queued for 2 seconds
5¢ Pinned v
Pipeline | Needs Jobs 2 Tests 0
Issues 0
Merge requests 0
execute_automate... upload_test_results
88 Manage >
test 5] upload_results_to_xra 5]
1 Plan > ° = © w v =
<[> Code >
7/ Build v
I Pipelines

Jobs

< C = gitlab. rgio.freire1/WebD: /iobs/6192628051 & %

Sergio Freire /| WebDemo / Jobs / #6192628051

Q Search or go to... rio, pynacl, cryptography, trio-websocket, selenium, PyGithub, robotframework-seleniumlibrary, rellu

N Successfully installed Deprecated-1.2.14 Py6ithub-2.2.0 attrs-23.2.0 certifi-2024.2.2 cffi-1.16.0 charset-normalizer-3.3.2 cryptography-42.

[RELE 0.3 docutils-0.20.1 h11-0.14.0 idna-3.6 invoke-2.2.0 outcome-1.3.0.post8 pycparser-2.21 pyjwt-2.8.0 pynacl-1.5.0 pysocks-1.7.1 rellu-0.7 re

W WebDemo quests-2.31.0 robotframework-6.0.2 robotframework-pythonlibcore-4.3.0 robotframework-seleniumlibrary-6.2.0 selenium-4.17.2 sniffio-1.3.8 so
rtedcontainers-2.4.0 trio-0.24.0 trio-websocket-8.11.1 typing-extensions-4.9.0 urllib3-2.2.0 wrapt-1.16.0 wsproto-1.2.0

X Pinned - [notice] A new release of pip is available: 23.3.1 -> 24.8

[notice] To update, run: pip install --upgrade pip

$ apt-get update

Merge requests 0 Get:1 http://deb.debian.org/debian bookworm InRelease [151 kB]

Issues 0

Get:2 http://deb.debian.org/debian bookworm-updates InRelease [52.1 kB]
8 Manage > Get:3 http://deb.debian.org/debian-security bookworm-security InRelease [48.8 kB]
Get:4 http://deb.debian.org/debian bookworm/main amdé4 Packages [8786 kB]
Plan 2 Get:5 http://deb.debian.org/debian bookworm-updates/main amdé4 Packages [12.7 kB]
N Code s Get:6 http://deb.debian.org/debian-security bookworm-security/main amdé4 Packages [138 kB]
Fetched 9188 kB in 1s (9890 kB/s)
% Build . Reading package lists...
$ echo "uploading results to Xray
Pipelines uploading results to Xray...
I Jobs $ curl -H "Content-Type: multipart/form-data” -u $XRAY_USERNAME:$XRAY_PASSWOR output.xmL" "$XRAY_SERVER_URL/rest/raven/2.0/impor
t/execution/robot?projectKey=$PROJECT _KEY"
Pipeline editor % Total % Received % Xferd Average Speed Time Time Time Current
o Dload Upload Total Spent Left Speed
Flpaling Snsduies 100 42360 O 1184 100 41176 31410929 0: -
Artifacts {"testExecIssue":{"i "key" :["CALC-408') 2 app/rest/api/2/issue/23118"}, "testIssues
self" T a pp/rest/api/2/issue/21929","testVersionId i
O secure > :"https://xray-demo3.getxray.app/rest/api/2/issue/21930", "testVersionId":99},{"id :"BOOK-357", "self": "htt;
ray pp/rest/api/2/issue/21931", "testVersionId":281}, "BOOK-358", ‘https://xray-demo3.getxra
@ Deploy & st/api/2/issue/21932", "testVersionId":73},{"id":"21933", "key": "BOOK-359", "self": R p/rest/api/2/issue/21933", "te
stVersionId":134},{"id":"21934", "key":"BOOK-360" , "self" a testVersionId
@ Operate > d ,"self": "https://xray-deno: /rest/api/2/issue/21935"
§ 62", "self":"https://xray-demo3.getxray.app/rest/api/2/issue/21936" , "testVersionId":118}1}, "infoMessages": ["Could not make transition from w
& Monitor 2 orkflow status Awaiting approval to workflow status Resolved."]}$ echo "done"
L Analyze >

&

Settings > Creating cache default-protected...
.cache/pip: found 590 matching artifact files and directories
Uploading cache.zip to https://storage.googleapis.com/gitlab-com-runners-cache/project/55008851/default-protected
Created cache
Cleaning up pro directory and file based variables

Job succeeded

CALC / CALC-408

Execution results - output.xml - [1708104908575]

#Edit QComment Assign More v Done Approved Declined Admin v

~ Details
Type: Test Execution Status: (View Workflow)
Priority: O Trivial Resolution: Unresolved
Affects Versions None Fix Version/s: None
Components: None
Labels None
Test Plan None
Test Environments: None
TestExecEstimation: O minutes

~ Description

Execution results imported from external source

v Tests
Add Tests v

Overall Execution Status

PASS

Total Tests: 8

= Fiter(s)
Show[100 V] entries Columns ~
Rank © Key Summary TestType #Req #Def Assignee Dataset TestVersion Finished status
0O 1 z:ao " validLogin Generic 0 0 spanaim | v ;sé?;/j o >
o 2 S0 invalid Usemame Generic 0 0 Spand 1T m v ool >
T .
i S L~ .
0 s S0 EmptyUsermame Generic 0 0 soanatt - Pt >
0 s SO0 emptyPassword Generic 0 0 Yoandim B v Tejrebiza >
o = L YR :
e S Valid Login Generic 0 0 Koanatt - Pt >

@ Triggering automation from Xray

If you aim to trigger automation from the Xray/Jira side, please have a look at Taking advantage of Jira Cloud built-in automation capabilities pag
e where you can see an example of triggering a GitLab pipeline from a Test Plan and reporting results back to it.

Cucumber example

Standard workflow (Xray as master)

In this scenario, we are managing the specification of Cucumber Scenarios/Scenario Outline(s) based tests in Jira, using Xray, as detailed in the "standard
workflow" mentioned in Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

Then we need to extract this specification from Jira (i.e. generate related Cucumber .feature files), and run it in GitLab against the code that actually
implements each step that are part of those scenarios.

Finally, we can then submit the results back to JIRA and they'll be reflected on the related entities.

The GitLab configuration file . gi t | ab- ci . ymi contains the definition of the build steps, including extracting the cucumber specification from Xray, running
the automated tests and submitting back the results.

.gitlab-ci.yml
i mge: "ruby:2.6"

test:

script:

- apt-get update -qq

- apt-get install unzip

- geminstall cucunber

- geminstall rspec-expectations

- 'curl -u $jira_user:$jira_password "$jira_server_url/rest/raven/ 1.0/ export/test?keys=$cucunber _keys" -o
features/features. zip'

- nkdir -p features

- 'rm-f features/*.feature'

- unzip -o features/features.zip -d features/

- cucunber -x -f json -0 data.json

- 'curl -H "Content-Type: application/json" -u $jira_user:$jira_password --data @ata.json "$jira_server_url
/rest/raven/ 1. 0/i nport/execution/ cucunber"'

- echo "done"

In this example, we're using a variable cucumber_keys defined in the CI/CD project level settings in GitLab. This variable contains one or more keys of
the issues that will be used as source data for generating the Cucumber .feature files; it can be the key(s) of Test Plan(s), Test Execution(s), Test(s),
requirement(s). For more info, please see: Exporting Cucumber Tests - REST.

VCS workflow (Git as master)

In this scenario, we are managing (i.e. editing) the specification of Cucumber Scenarios/Scenario Outline(s) based tests outside Jira, as detailed in the
"VCS workflow" mentioned in Testing in BDD with Gherkin based frameworks (e.g. Cucumber).

The GitLab configuration file . gi t | ab- ci . yni contains the definition of the build steps, including synchronizing the Scenarios/Backgrounds to Xray,
extracting the cucumber specification from Xray, running the automated tests and submitting back the results.
.gitlab-ci.yml

https://docs.getxray.app/pages/viewpage.action?pageId=62267221
https://docs.getxray.app/display/XRAY/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/pages/viewpage.action?pageId=62267221
https://docs.getxray.app/pages/viewpage.action?pageId=66060471

i mge: "ruby:2.6"

test:

script:

- apt-get update -qq

- apt-get -y install unzip zip

- geminstall cucunber

- geminstall rspec-expectations

- 'cd features; zip -R features.zip "*.feature"; cd ..; curl -H "Content-Type: nultipart/formdata" -u
$jira_user:$jira_password -F "file=@eatures/features.zip" "$jira_server_url/rest/raven/1.0/inport/feature?
proj ect Key=CALC" '

- nkdir -p features
- 'rm-f features/*.feature'

- 'curl -u $jira_user:$jira_password "$jira_server_url/rest/raven/ 1.0/ export/test?filter=$filter_id" -o
features/features. zip'
- unzip -o features/features.zip -d features/
- cucunber -x -f json -o data.json || true
"curl -H "Content-Type: application/json" -u $jira_user:$jira_password --data @lata.json "$jira_server_url
/rest/raven/ 1. 0/inport/execution/cucunber"’
- echo "done"

In this example, we're using a variable filter_id defined in the CI/CD project level settings in GitLab. This variable contains the id of the Jira issues
based filter that will be used as source data for generating the Cucumber .feature files; it can be the key(s) of Test Plan(s), Test Execution(s), Test(s),
requirement(s). For more info, please see: Exporting Cucumber Tests - REST.

https://docs.getxray.app/display/XRAY/Exporting+Cucumber+Tests+-+REST

	Integration with GitLab

