
Maximize the efficiency of using Cucumber Scenarios in 
Xray

Overview

Let’s say we have five Cucumber tests that validate the same flow but with different data permutations. 
Furthermore, since several users created these tests manually, we can see slight discrepancies in the 
step wording.

 

Why is this problematic? Having 5 test issues means 5x maintenance whenever the specification needs 
to change. Further, manual multi-user creation or adjustment leads to messier step definitions for 
automation engineers (as we can have slightly different steps, with different wording, that perform exactly 
the same actions).

In this tutorial, we will optimize the efficiency of this mini regression suite via data-driven automation with 
the help of BDD Steps Library and Parameterized Tests features of Xray.

BDD Steps Library
 

First, we will consolidate the steps and improve future reusability. Xray indexes Gherkin steps 
automatically in the library whenever users create/edit Cucumber-type Tests/Preconditions. We will open 
the project library from the Testing Board.

What you'll learn

The shortcomings of “typical” Cucumber Scenarios 
How BDD Steps Library helps with reusability
How data-driven Cucumber testing optimizes scaling & efficiency

Overview
BDD Steps Library
Parameterized Cucumber Tests

Data-driven precondition
Tips
References



 

Now, we will choose any redundant steps and edit it to have the desired syntax version. We will 
parameterize the dynamic parts with descriptive variable names. We will also surround those parameters 
in quotes as an optional good practice.

Once the library is updated for all step variations, we can go to one of the Cucumber tests for which we’
ve done the edits (using the link under the definition).

In the list of the steps on the left, we can see that Xray already extracted the notion of a 
parameter for one dynamic occurrence (<var1>). The rules for the automatic identification of 
data-driven elements are defined in the settings we visited earlier.

Enums include uppercase strings (like VIP in our example). Also, docstrings and elements 
delimited by pipes are supported.



We adjust its whole Scenario definition using the auto-complete functionality (for the steps that have not 
been updated automatically from the library). Remember to prompt the suggestions using the shortcut 
specified in the tooltip.

The final form of our data-driven Scenario looks like this:

Once the step optimization is completed in this updated “master” test issue, we can delete or archive the 
other four Cucumber tests and remove the outdated iterations of steps from the library (keep in mind, 
steps not marked as “static” are automatically deleted when they are no longer being used by any issue).

If tests require the same actions, you can select the option from the suggested list instead of typing. For 
new actions, consider creating them in the BDD Steps Library first, rather than in the test issues - that 
way you can avoid redundancy and improve consistency upfront.

Next, we will complete the upgrade to data-driven automation using parameterized Cucumber tests.

Parameterized Cucumber Tests
 

With the variables syntax (<>) already in place, we only need the dataset to provide the permutations for 
the execution. We can add it from the same screen by specifying the data manually or importing it from 
CSV.

 

In this case, we just recreated the same permutations that were present in the five original tests. Just 
keep in mind that one of the benefits of this data-driven approach is that you can easily scale the dataset 
up or down without worrying about adjusting multiple test issues one by one.



When we get to the execution, here is what you see in the Test Run details - several iterations of the 
same Scenario, with the data values replacing parameter syntax and the execution status per data 
permutation.

Data-driven precondition

As an optional exercise, let’s say we notice that many different tests will use the Given step as the 
precondition. We then decide to separate it out.

Here is the tricky part - the dataset, including parameters from both the test and the precondition, is 
always in the . Whenever you have a data-driven precondition, you must ensure the dataset test issue
for associated test has the parameters and values specified in that precondition.each 

So, in our example, we can execute the updated test issue without any changes to the dataset to see this 
breakdown in the Test Run details. Notice that the value replacement highlighted in blue is exactly the 
same as before we had a precondition.

Tips

Additionally, you consider leveraging the Test Case Designer feature of Xray Enterprise to not 
only generate more complex datasets faster but also to access data coverage analysis 
visualizations.



If the BDD Steps Library feature is out of sync for any reason, you can launch Reindex from the 
project settings to make sure all the steps you need are in the library.

You can track the status from the same triple-dot menu.

Ensure the parameter name syntax is the same between the script and the dataset.
Consider adding the project-level lists in Xray settings for parameter values that you frequently 
reuse.
If necessary, you can override the test-level dataset with the one in the test plan or the test 
execution.
You can achieve the same results using the Scenario Outline format with the Examples table in 
the definition (like having embedded data) and no dataset defined at the Test level; Xray 
supports this implicit data in case you want to embed it directly in the Gherkin specification. It 
depends on the dataset size and if you wish to mix it with the script for review clarity purposes.

References
BDD Steps Library
Parameterized Tests 

https://docs.getxray.app/display/XRAYCLOUD/BDD+Step+Library
https://docs.getxray.app/display/XRAYCLOUD/Parameterized+Tests

	Maximize the efficiency of using Cucumber Scenarios in Xray

