Integration with GitLab

GitLab is a well-known CI/CD tool available on-premises and as SaaS.
Xray does not provide yet a plugin for GitLab. However, it is easy to setup GitLab in order to integrate it with Xray Cloud.

Since Xray provides a full REST API, you may interact with Xray, for submitting results for example.

® Integration scenarios
© JUnit example

® Robot Framework example

® Cucumber example
o Standard workflow (Xray as master)
© VCS workflow (Git as master)

® Triggering automation from Xray side

Integration scenarios

JUnit example

In this scenario, we want to get visibility of the automated test results from some tests implemented in Java, using the JUnit framework.
This recipe could also be applied for other frameworks such as NUnit or Robot (if supported).

We need to setup a Git repository containing the code along with the configuration for GitLab build process.

The tests are implemented in a JUnit class as follows.

CalcTest.java

package com xpand. j ava;

inport org.junit.After;
import org.junit.Before;
import org.junit. Test;

import static org.hantrest. CoreMatchers.is;
inport static org.junit.Assert.assertThat;

public class Cal cTest {

@efore
public void setUp() throws Exception {

}

@fter
public void tearDown() throws Exception {

}

@est

public void CanAddNunbers()

{
assert That (Cal cul ator. Add(1, 1), is(2));
assert That (Cal cul ator. Add(-1, 1), is(0));

@est

public void CanSubtract ()

{
assert That (Cal cul ator. Subtract (1, 1), is(0));
assert That (Cal cul ator. Subtract (-1, -1), is(0));
assert That (Cal cul ator. Subtract (100, 5), is(95));

@est

public void CanMil tiply()

{
assertThat (Cal cul ator. Mul tiply(1l, 1), is(1));
assertThat (Cal cul ator. Mul tiply(-1, -1), is(1));
assert That (Cal cul ator. Mul ti pl y(100, 5), is(500));

public void CanDi vide()

{
assertThat (Cal cul ator. Divide(1, 1), is(1));
assertThat (Cal cul ator. Divide(-1, -1), is(1));
assert That (Cal cul ator. Di vi de(100, 5), is(20));

}

@est

public void CanDoStuff ()

{
assertThat (true, is(true));

}

The GitLab configuration file . gi t | ab- ci . yri contains the definition of the build steps, including running the automated tests and submitting the results.

.gitlab-ci.yml

Use Maven 3.5 and JDK8
i mge: maven: 3. 5-j dk-8

vari abl es:

This will supress any downl oad for dependencies and plugins or upload nessages which would clutter the
consol e 1 0g.

“showDateTinme® will show the passed time in nilliseconds. You need to specify "--batch-node’ to nake this
wor k.

MAVEN_OPTS: "-Dmaven. repo. | ocal =.n2/repository -Dorg.slf4j.sinpleLogger.!|og.org.apache. maven.cli.transfer.
S| f 4) MavenTr ansf er Li st ener =\WWARN - Dor g. sl f 4] . si npl eLogger . showDat eTi ne=true -Dj ava. awt . headl ess=t rue"

As of Maven 3.3.0 instead of this you may define these options in *.nvn/maven.config so the sane config is
used

when running fromthe command |ine.

“install AtEnd” and "“depl oyAtEnd are only effective with recent version of the correspondi ng pl ugins.

MAVEN_CLI _OPTS: "--batch-nbde --errors --fail-at-end --show version -Dinstall At End=true -Ddepl oyAt End=t rue"

Cache downl oaded dependenci es and pl ugi ns between builds.
To keep cache across branches add 'key: "$Cl _JOB_REF_NAME"'
cache:
pat hs:
- .nR/repository

maven_bui | d:
script:
-

echo "building ny amazing repo..."

m/n test
export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",
\"client_secret\": \"$client_secret\" }" https://xray.cloud. getxray. app/ api/v2/authenticate| tr -d '"")

echo $token

curl -H "Content-Type: text/xm "™ -H "Authorization: Bearer $token" --data @arget/surefire-reports/ TEST-
com xpand. j ava. Cal cTest. xm "https://xray. cl oud. get xray. app/ api / v2/i nport/execution/junit ?project Key=CALC"

echo "done"

In order to submit those results, we'll just need to invoke the REST API (as detailed in Import Execution Results - REST).

However, we do not want to have the Xray API credentials hardcoded in GitLab's configuration file. Therefore, we'll use some environment variables
defined in project settings, including:

® client_id: the client_id associated with the API key created in the Xray cloud instance
® client_secret: the client_secret associated with the API key created in the Xray cloud instance

G) Please note

The user associated with Xray's API key must have permission to Create Test and Test Execution Issues.

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST

QP GitLab Projects v Groups v Activity Milestones Snippets () @ v Search or jump to...

cucumber_xray_tes...
cloud Variables @ Collapse

& Project Variables are applied to environments via the runner. They can be protected by only exposing them to protected branches or tags.
You can use variables for passwords, secret keys, or whatever you want.

@ Repository

client_id F———— Protected e
D Issues 0 X

client_secret i Protected (-]
11 Merge Requests 0

cucumber_keys RO Protected (-}
4 ClI/CD

alue Protected
%

&3 Operations
L Registry

In .gitlab-ci.ym a"step" must be included that will use "curl" in order to first obtain a token and then finally submit the results to the REST API, using
that token.

export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",\"
client_secret\": \"$client_secret\" }" https://xray.cloud. getxray.app/api/v2/authenticate| tr -d '"")

curl -H "Content-Type: text/xm " -H "Authorization: Bearer $token" --data @arget/surefire-reports/ TEST-com xpand.
java. Cal cTest.xm "https://xray.cl oud. get xray. app/ api /v2/inport/execution/junit?projectKey=SP"

We're using "curl” utility that comes in Unix based OS'es but you can easily use another tool to make the HTTP request; however, "curl” is provided in the
container used by GitLab.

& GitLab Projects v Groups v Activity Milestones Snippets (D) v Search or jump to...

J java-junit-calc-cloud Sergio Freire > java-junit-calc-cloud > Jobs > #119262226 maven_build

€ Project @© passed J Job #119262226 triggered 55 minutes ago by 6 Sergio Freire
Duration: 2 minutes 20 seconds

B® Repository Timeout: 1h (from project)]

44

Showing last 499.84 KiB of log - Complete Raw []

Runner: shared-runners-manager-

) Issues 0 5.gitlab.com (#380986)

Downloading from central: https://repo.maven.apache.org/maven2/org/apache/maven/wagon/wagon-provider-api/1.0-beta—
11 Merge Requests 0 6/wagon-provider-api-1.0-beta-6.pom

Commit 44bffc64 @
Progress (1): 1.8 kB

ci/cD Downloaded from central: https: - ider-api = - fix pom
H ps://repo.maven.apache.org/maven2/org/apache/maven/wagon/wagon-provider-api/1.0-beta
6/wagon-provider-api: .pom (1.8 kB at 49 kB/s)
Pipelines Downloading from xpandit: http://maven.xpand-it.com/artifactory/releases/org/apache/maven/wagon/wagon/1.0-beta— © Pipeline #36261476 from master
6/wagon-1.0-beta-6.pom
Jobs Downloading from central: https://repo.maven.apache.org/maven2/org/apache/maven/wagon/wagon/1.0-beta-6/wagon-1.0— test
beta-6.pom
Schedules Progress (1): 2.8/12 kB
Progress (1): 5.5/12 kB
Charts Progress (1): 8.3/12 kB < () maven_build

Progress (1): 11/12 kB
Progress (1): 12 kB
G Operations

Downloaded from central: https://repo.maven.apache.org/maven2/org/apache/maven/wagon/wagon/1.0-beta-6/wagon-1.0-beta-
6.pom (12 kB at 258 kB/s)
Downloading from xpandit: http://maven.xpand-it.com/artifactory/releases/org/codehaus/plexus/plexus—

O Registry

@ Triggering automation from Xray

If you aim to trigger automation from Xray/Jira side, please have a look at Taking advantage of Jira Cloud built-in automation capabilities page
where you can see an example of triggering a GitLab pipeline from a Test Plan and reporting results back to it.

Robot Framework example

In this scenario, we want to get visibility of the automated test results from some Ul tests implemented in Robot Framework (Python) together with
Selenium (using the "robotframework-seleniumlibrary"), and using Chrome for testing.

https://docs.getxray.app/display/XRAYCLOUD/Taking+advantage+of+Jira+Cloud+built-in+automation+capabilities

We need to set up a Git repository containing the code along with the configuration for GitLab build process.

The tests are implemented in Robot Framework .robot files as follows.

valid_login.robot

***% Settings ***
Docunent ati on Atest suite with a single test for valid login.

This test has a workflow that is created using keywords in
the inported resource file.

Resour ce resource. r obot

*** Test Cases ***

Valid Login
[Tags] U
Open Browser To Logi n Page
I nput User nane dero
I nput Password node

Subnmit Credentials
| come Page Shoul d Be Open
[Tear down] Cl ose Browser

The GitLab configuration file . gi t 1 ab- ci . yml contains the definition of the build steps, including running the automated tests and submitting the results,
as two different stages.

.gitlab-ci.yml

Oficial |anguage i mage. Look for the different tagged rel eases at:
https://hub. docker.comr/library/python/tags/
i mge: python:3.12.2

Change pip's cache directory to be inside the project directory since we can
only cache local itens.
vari abl es:

PI P_CACHE_DI R "$Cl _PRQIECT_DI R/ . cache/ pi p"

https://pip.pypa.iolen/stablel/topics/caching/
cache:
pat hs:
- .cachel/pip

st ages:
- execute_autonated_tests
- upload_test_results

bef ore_script:
- python --version ; pip --version # For debuggi ng
- pip install virtual env
- virtual env venv
- source venv/bin/activate
- pipinstall -r requirements.txt
- apt-get update

test:
stage: execute_autonated_tests
before_script: |
set -e
apt-get install -yqq unzip curl
Install Chrome & chronedriver
curl -sS -0 - https://dl.google.conlinux/linux_signing_key.pub | apt-key add -
echo "deb https://dl.google.conllinux/chrone/deb/ stable main" >> /etc/apt/sources.list.d/google.list
apt update &% apt install google-chronme-stable -y
wget -O /tnp/chromedriver.zip https://storage. googl eapi s. conf chrone-for-testing-public/121.0.6167.85/1inux64
/chromedriver-1linux64.zip
I's -la /tnmp/chronedriver.zip
unzip -j /tnp/chronedriver.zip chronedriver-Iinux64/chronmedriver -d /usr/local/bin/
nohup pyt hon denpapp/ server.py &

script: |

chronedriver -v &\

pip install -r requirements.txt && \

robot -x junit.xm -o output.xnl login_tests || true
allow_failure: true
artifacts:

pat hs:

- output.xn

when: al ways

upl oad_results_to_xray:
stage: upload_test_results
script:
-
echo "uploading results to Xray..."
export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",\"
client_secret\": \"$client_secret\" }" https://xray.cloud. getxray. app/api/v2/authenticate| tr -d '"")
curl -H "Content-Type: text/xm" -H "Authorization: Bearer $token" --data @output.xm" "https://xray.
cl oud. get xray. app/ api / v2/i nport/ executi on/ robot ?pr oj ect Key=$pr oj ect _key"
dependenci es:
- test

In order to submit those results, we'll just need to invoke the REST API (as detailed in Import Execution Results - REST).

However, we do not want to have the Xray API credentials hardcoded in the GitLab's configuration file. Therefore, we'll use environment variables defined
in the project settings, including:

® client_id: the client_id associated with the API key created in the Xray cloud instance
® client_secret: the client_secret associated with the API key created in the Xray cloud instance
® project_key: the Jira project key

@ Please note

The user associated with the Xray's APl key must have permissions to Create Test and Test Execution Issues.

Variables c

Variables store information that you can use in job scripts. Each project can define a maximum of 8000 variables. Learn more.

Variables can be accidentally exposed in a job log, or maliciously sent to a third party server. The masked variable feature can help reduce the risk of accidentally exposing
variable values, but is not a guaranteed method to prevent malicious users from accessing variables. How can | make my variables more secure?

Variables can have several attributes. Learn more.

e Protected: Only exposed to protected branches or protected tags.
¢ Masked: Hidden in job logs. Must match masking requirements.
* Expanded: Variables with $ will be treated as the start of a reference to another variable.

CI/CD Variables </>7 Reveal values | Add variable
Key | Value Environments Actions

project_key [*akkk [0 All (default) [V4
client_secret [3} ! All (default) [Vd
client_id [wrake [0 All (defautt) [2’

In.gitlab-ci.ym a"step" must be included that will use "curl" in order to first obtain a token and then finally submit the results to the REST API, using
that token.

export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",\"
client_secret\": \"$client_secret\" }" https://xray.cloud.getxray. app/ api/v2/authenticate| tr -d '"")

curl -H "Content-Type: text/xm " -H "Authorization: Bearer $token" --data @output.xm" "https://xray.cloud.
get xray. app/ api / v2/i nport/ execution/ robot ?proj ect Key=$pr oj ect _key"

We're using "curl" utility that comes in Unix based OS'es but you can easily use another tool to make the HTTP request; however, "curl" is provided in the
container used by GitLab.

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST

o + w‘; Sergio Freire /| WebDemo |/ Pipelines / #1188548786

o) C Update .gitlab-ci.yml file

@ Passed Sergio Freire created pipeline for commit 3846bd77 [3% finished 1 minute ago

Q Search or go to...

Project For master
W WebDemo latest €0 2 Jobs D) 2.51 (2 minutes 30 seconds, queued for 0 seconds
¢ Pinned
Pipeline Needs Jobs 2 Tests 0

Issues 0

Merge requests 0

Repository execute_automate... upload_test_results
8 Manage N © test 9] @ upload_results_to_xray s
E Plan >
<[> Code >
7/ Build v
| Pipelines

Jobs

Pipeline editor
Pipeline schedules
Artifacts

Secure >

(]

Deploy >

v D + v Sergio Freire /| WebDemo / Jobs / #6245186304

(17 12 1

arch job log Q‘@ 2|4+]

Q search or go to...

Using cached wsproto-1.2.8-py3-none-any.whl (24 kB)
Using cached outcome-1.3.8.post8-py2.py3-none-any.whl (18 KB)

Duration: 58 seconds

Project : Finished: just now
Using cached h11-8.14.8-py3-none-any.whl (58 KB)
:) . . . s . Queued: 0 seconds
W WebDemo Installing collected packages: sortedcontainers, wrapt, urllib3, typing-extensions, sniffio, robotframework-pythonlibcore, robotframework,
pysocks, pyjwt, pycparser, invoke, idna, hil, docutils, charset-normalizer, certifi, attrs, wsproto, requests, outcome, Deprecated, cffi, t Timeout: 1h (from project) @
% Pinned 2 rio, pynacl, cryptography, trio-websocket, selenium, PyGithub, robotframework-seleniumlibrary, rellu Runner: #12270831 (XxUrkriXT) 2-
Jssues 0 Successfully installed Deprecated-1.2.14 PyGithub-2.2.@ attrs-23.2.0 certifi-2024.2.2 cffi-1.16.8 charset-normalizer-3.3.2 cryptography-42. :Lm“ggj_?;i“e‘gisma“'
8.4 docutils-0.20.1 h11-8.14.8 idna-3.6 invoke-2.2.8 outcome-1.3.0.poste pycparser-2.21 pyjwt-2.8.8 pynacl-1.5.@ pysocks-1.7.1 rellu-8.7 re manager.gitlab com/defautt
MR (CETES 0 quests-2.31.0 robotframework-6.8.2 robotframework-pythonlibcore-4.3.0 robotframework-seleniumlibrary-6.2.0 seleniun-4.18.1 sniffio-1.3.0 so
rtedcontainers-2.4.0 trio-0.24.8 trio-websocket-0.11.1 typing-extensions-4.9.0 urllib3-2.2.1 wrapt-1.16.8 wsproto-1.2.0 :
’ Commit 3846bd77 (%
Repository $ apt-get update) -
http://deb.debian.org/debian bookworm InRelease [151 kB] Update gitlab-ci.yml file
8 Manage > http://deb.debian.org/debian bookworn-updates InRelease [55.4 B]
http://deb.debian.org/debian-security bookworm-security InRelease [48.8 kB] Pipeline #1188548786 (@ Passed for
& Plan ? http://deb.debian.org/debian bookworn/main amdé4 Packages [8786 kBI master [
<> Code N http://deb.debian.org/debian bookworm-updates/main amdé4 Packages [12.7 kB]
http://deb.debian.org/debian-security bookworn-security/main amdé4 Packages [143 kB] upload_test_results v
77 Build v Fetched 9196 kB in 1s (9227 kB/s)
- Reading package lists... Related jobs
Hipelnes) $ echo "uploading results to Xray..." # collapsed multi-line command
| Jobs uploading results to Xray... = © upload_resuits_to_xray
% Total % Received % Xferd Average Speed Time Time Time Current
Pipeline editor Dload Upload Total Spent Left Speed
Pipeline schedules 108 578 100 443 100 135 325 99 0:00:01 0:00:01 424
% Total % Received % Xferd Average Speed Time Time Time Current
Artifacts Dload Upload Total Spent Left Speed
O secure R 100 42350 160 99 100 42251 9 4131 0:00:11 0:00:10 0:00:61 24
12585", 'key" : "CALC-337" | "self": "https://xraytutorials.atlassian.net/rest/api/2/issue/12585"
@ Deploy > saving cache for successful job
Creating cache default-protected.
@ Operate > .cache/pip: found 659 matching artifact files and directories
@ Monitor R Uploading cache.zip to https://storage.googleapis.con/gitlab-con-runners-cache/project/55088851/default-protected
Created cache
L Analyze > Cleaning up project directory and file based variables
Job succeeded
© Settings >

Projects | [Calculator /| # Addepic / [CALC-337

Execution results [1708704422697]

@ Attach

Create subtask P Linkissue v [Tests & ScriptedFields /N\Risk assessment +«s

Description

Add a description

Environment

None

View on board

Overall Execution Status

PASSED TOTAL TESTS: 8
| - Only My TestRuns Filters v 100 v Columns v
Rank* Key Summary TestType Dataset #Defects TestRunAssignee Priority Status Actions
0 1 CALC-20 Valid Login Generic ::] 0 Sérgio Freire PASSED g
o0 2 CALC-21 Invalid Username Generic =::] 0 Sérgio Freire PASSED H soe
0 s CALC-22 Invalid Password Generic m 0 Sérgio Freire PASSED =
0 a CALC-338 Invalid Username And Password Generic m 0 Sérgio Freire PASSED =
0 s CALC-24 Empty Username Generic ::] 0 Sérgio Freire PASSED H
0 e CALC-25 Empty Password Generic =::] 0 Sérgio Freire PASSED H ..
o 7 CALC-26 Empty Username And Password Generic m 0 Sérgio Freire PASSED E
0 8 CALC-27 Valid Login Generic m 0 Sérgio Freire PASSED =
1 Total 8 issues

@ Triggering automation from Xray

If you aim to trigger automation from the Xray/Jira side, please have a look at Taking advantage of Jira Cloud built-in automation capabilities pag
e where you can see an example of triggering a GitLab pipeline from a Test Plan and reporting results back to it.

Cucumber example

https://docs.getxray.app/display/XRAYCLOUD/Taking+advantage+of+Jira+Cloud+built-in+automation+capabilities

Standard workflow (Xray as master)

In this scenario, we are managing the specification of Cucumber Scenarios/Scenario Outline(s) based tests in Jira, using Xray, as detailed in the "standard
workflow" mentioned in Testing in BDD with Gherkin based frameworks (e.g. Cucumber).

Then we need to extract this specification from Jira (i.e. generate related Cucumber .feature files), and run it in GitLab against the code that actually
implements each step that are part of those scenarios.

Finally, we can then submit the results back to JIRA and they'll be reflected on the related entities.

The GitLab configuration file . gi t | ab- ci . ym contains the definition of the build steps, including extracting the cucumber specification from Xray, running
the automated tests and submitting back the results.

.gitlab-ci.yml

i mge: "ruby:2.6"

test:
script:
-
apt-get update -qq
apt-get install unzip
geminstall cucunber
geminstall rspec-expectations
export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",
\"client_secret\": \"$client_secret\" }" https://xray.cloud. getxray. app/ api/v2/authenticate| tr -d '"")
curl -H "Content-Type: application/json" --output features/features.zip -X GET -H "Authorization:
Bearer ${token}" "https://xray.cloud.getxray.app/api/v2/ export/cucunber?keys=$cucunber_keys"

nkdir -p features

rm-f features/*.feature

unzip -o features/features.zip -d features/

cucunber -x -f json -o data.json

curl -H "Content-Type: application/json" -X POST -H "Authorization: Bearer ${token}" --data @lata.json
https://xray. cl oud. get xray. app/ api / v2/i nport/execution/ cucunber

echo "done"

In this example, we're using a variable cucumber_keys defined in the CI/CD project-level settings in GitLab. This variable contains one or more keys of
the issues that will be used as source data for generating the Cucumber .feature files; it can be the key(s) of Test Plan(s), Test Execution(s), Test(s),
requirement(s). For more info, please see: Exporting Cucumber Tests - REST.

&P GitLab Projects v Groups v Activity Milestones Snippets (D) v Search or jump to...
c cucumber_xray_tes... Sergio Freire > cucumber_xray_tests-cloud > Jobs > #119278583
cloud test Retry
€ Project 9 passed | Job #119278583 triggered 15 minutes ago by) Sergio Freire

Duration: 39 seconds

. Timeout: 1h (from project

B Repository (project) ©
Runner: shared-runners-manager-

O Issues 0 3.gitlab.com (#44028)

Running with gitlab-runner 11.4.2 (cf91dSel)

0 on docker-auto-scale fa6cabds Commit abb780eb @
Using Docker executor with image ruby:2.3 ...
Pulling docker image ruby:2.3 ...

11 Merge Requests

X

4 Cl/cD Using docker image sha256:050207a3b7156bf2a970d358d22cddc194cbc62182afcbaf6788b3b451cabba for ruby:2.3 ...

Running on runner-fa6cab46-project-9353858-concurrent-@ via runner-faGcabd6-srm-1542022006-303607c8. . .

Pipelines Cloning repository... © Pipeline #36265995 from master
Cloning into '/builds/sergio.freirel/cucumber_xray_tests-cloud'...

Jobs Checking out abb78@eb as master...
Skipping Git submodules setup test

Schedtiles $ apt-get update -qq # collapsed multi-line command
Reading package lists...

Charts Building dependency tree * © test

Reading state information...
Suggested packages:
Operations zip
The following NEW packages will be installed:
unzip
0 upgraded, 1 newly installed, @ to remove and 22 not upgraded.
Need to get 170 kB of archives.

&

n

Registry

VCS workflow (Git as master)

https://docs.getxray.app/pages/viewpage.action?pageId=31622264
https://docs.getxray.app/display/XRAYCLOUD/Exporting+Cucumber+Tests+-+REST

In this scenario, we are managing (i.e. editing) the specification of Cucumber Scenarios/Scenario Outline(s) based tests outside Jira, as detailed in the
"VCS workflow" mentioned in Testing in BDD with Gherkin based frameworks (e.g. Cucumber).

The GitLab configuration file . gi t | ab- ci . ym contains the definition of the build steps, including synchronizing the Scenarios/Backgrounds to Xray,

extracting the cucumber specification from Xray, running the automated tests and submitting back the results.
.gitlab-ci.yml

i mage: "ruby:2.6"

test:
script:
-
apt-get update -qq
apt-get -y install zip unzip
geminstall cucunber
geminstall rspec-expectations
export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",
\"client_secret\": \"$client_secret\" }" https://xray.cloud. getxray. app/api/v2/authenticate| tr -d '"")

cd features; zip -R features.zip "*.feature"; cd ..; curl -H "Content-Type: nultipart/formdata" -H
"Aut hori zation: Bearer ${token}" -F "file=@eatures/features.zip"

"https://xray.cloud. getxray. app/ api /v2/inport/feature?project Key=CALC"
nkdir -p features

rm-f features/*.feature

curl -H "Content-Type: application/json" --output features/features.zip -X GET -H "Authorization:

Bearer ${token}" "https://xray.cloud.getxray.app/api/v2/ export/cucunber?filter=$filter_id"
unzip -o features/features.zip -d features/
cucunber -x -f json -o data.json || true
curl -H "Content-Type: application/json" -X POST -H "Authorization: Bearer ${token}" --data @ata.json

https://xray. cl oud. get xray. app/ api / v2/i nport/executi on/ cucunber
echo "done"

In this example, we're using a variable filter_id defined in the CI/CD project level settings in GitLab. This variable contains the id of the Jira issues

based filter that will be used as source data for generating the Cucumber .feature files; it can be the key(s) of Test Plan(s), Test Execution(s), Test(s),
requirement(s). For more info, please see: Exporting Cucumber Tests - REST.

Triggering automation from Xray side

Please have a look at Integration with Automation for Jira to see some examples of how automation can be triggered from Xray side.

https://docs.getxray.app/pages/viewpage.action?pageId=31622264
https://docs.getxray.app/display/XRAYCLOUD/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAYCLOUD/Taking+advantage+of+Jira+Cloud+built-in+automation+capabilities

	Integration with GitLab

