Testing using Calabash and Xamarin Test Cloud in Ruby

Overview

In this tutorial, we will create a mobile test using Calabash and, optionally, the Xamarin Test Cloud.

In this case, the test (specification) is initially created in Jira as a Cucumber Test and afterwards, it is exported using the Ul or the REST API.

.@. Android and iOS

For the purpose of this tutorial, we will use an Android app as basis. The only change relevant for iOS would be to use the "calabash-ios"
command instead of "calabash-android".

Requirements

® Android SDK (or iOS SDK)
® install the Ruby gems: "calabash-android" (or "calabash-ios"), "calabash-cucumber”, "xamarin-test-cloud", "rubyzip"

Description

The code for our test will be the code for the basic "Hello World!" application that Android Studio generates.

Create a Cucumber Test, of Cucumber Type "Scenario”, in Jira. The test will validate the presence of the "Hello World!" on the device's screen.

hello.feature

Feature: App startup banner

@\BC- 131

Scenari o: Message banner after startup
Wien | wait for 2 seconds
Then | see "Hello Wrld!"

"calabash-android" provides some steps that can be reused in order to write Cucumber Scenarios/Scenario Outlines; in other words, if you just reuse those
steps, you don't have to write any code at all for your tests.

After creating the Test in Jira and associating it with requirements, etc., you can export the specification of the test to a Cucumber .feature file via
the REST API or the Export to Cucumber Ul action from within the Test Execution issue.

The created file will be similar to the one above, but will contain the references to the Test issue key and the covered requirement issue key.

Project setup

In the project base folder, run the following command which will create a basic .feature.

cal abash-android gen

Note that the Appl i cati onMani f est. xm must contain the "android.permission.INTERNET" permission. See example below:

https://github.com/calabash/calabash-android/blob/master/ruby-gem/lib/calabash-android/canned_steps.md

<?xm version="1.0" encodi ng="utf-8"7?>
<mani fest xm ns: androi d="http://schemas. androi d. conf apk/res/ andr oi d"
package="com exanpl e. snsf . nyappl i cati on">

<application
androi d: al | owBackup="true"
androi d: i con="@xi pmap/ic_| auncher"
andr oi d: | abel =" @t ri ng/ app_nane"
andr oi d: supportsRt |1 ="true"
androi d: t heme=" @t yl e/ AppThene" >
<activity android: name=". Mai nActivity">
<intent-filter>
<action android: nane="androi d.intent.action. VAIN' />

<cat egory androi d: name="andr oi d. i ntent. cat egory. LAUNCHER" />
</intent-filter>
</activity>
</ appl i cation>

<uses-perm ssi on androi d: nane="andr oi d. per m ssi on. | NTERNET" />
</ mani f est >

Running tests locally

You can run your tests locally using a device emulator or with a real connected device.

cal abash-androi d run app\ bui | d\ out put s\ apk\ app- debug. apk -x json -o data.json

This command will generate a Cucumber JSON report file that can be imported to Xray in the same way you would generally do for Cucumber tests, i.e.,
via the REST API or the Import Execution Results action within the Test Execution.

Running tests in the Cloud with Xamarin Test Cloud

First, you must execute "calabash-android" with the "build" argument.

cal abash-androi d build app\buil d\ out put s\ apk\ app- debug. apk

Before submitting the application for testing, you must know the API key on the Test Cloud (obtainable under the team's section).

API key for Xpand it Team

a80654boda3638a99!

Afterwards, you can use the "test-cloud" utility to submit the packaged application (e.g., .apk) by identifying the following:

API key

Test Cloud's username (i.e., email)
device's list ID

series name

Cucumber config file used by the "test-cloud” utility:

config/cucumber.yml

androi d: PLATFORMrandroid -f json

Example syntax or invoking "test-cloud" for submission of the app:

test-cloud subnmit app\buil d\out put s\ apk\ app-debug. apk a80654b0da3638a999a235e7b31d1433 --user tester @xanple.
com --devices 13684d00 --series "master" --locale "en_US" --async-json -p android --config config\cucunber.
ym > test-cloud.json

As soon as the test run finishes in Xamarin's Test Cloud, the detailed report will be available on the Test Cloud's page.

Some relevant numbers are displayed, such as the total devices and tests with failures.

My Application version 1011

Total Device Time Run Time Devices 0S Versions Peak Memory App Size

8 min lO min 3 3 4927 MB 131 MB

Failures by category

By OS version By form factor By manufacturer

Android 4.4.3 [« UG Phone » BVE HTC [« B
Android 6.0.1 0/1 Tablet a/0 HUAWEI 0/1
Android 7.0 0/1 LGE 0/1

You can analyze a given test failure: see what step failed, the device and test logs.

Xamarin

- status
Ovenview (0] Devicelog 4 TestFailures) Stack Trace # Sippedstep | X
A previous step failed which prevented this step being executed.
Q Search tests.. -] HTC Desire 510
e e os Screen size
Android 443 47in (11.93 cm)
Message banner after startup 1#
Model Resolution
HTC Desire 510 480 x 854 (208 ppi)
O When I wait for 2 seconds 14
® Then I see “Hello World!" o
August 2014
e Q &
Detsic FulSize Device log Tertlos
Test duration: Step duration:
282.63 sec 10.22 sec
Memory Usage
ome

CPU Usage

Importing results to Xray
Note that Xray supports the submission of a zip file containing multiple Cucumber JSON reports, one per each device.

In order to obtain Test Cloud's results in a machine-friendly way, you need to use Test Cloud's REST API since the "test-cloud" utility does not currently
provide an immediate way of obtaining the results.

However, it's possible to use the preliminary Test Cloud Ruby client SDK and API in order to produce a ZIP file containing the Cucumber JSON reports.

Below is an example of an implementation where you pass the API key and the "test-cloud" output file as arguments, and that will produce a "results.zip"
file.

https://docs.getxray.app/display/XRAY31/Import+Execution+Results+-+REST#ImportExecutionResultsREST-MultipleExecutionResults
https://testcloud.xamarin.com/sdk/v0/ruby/src/client.rb

obtain_tc_results.rb

require '"tnpdir'
require 'open-uri'’
require 'zip'
require './client.rb'

def downl oad_file(url, dir, filename)

open("#{dir}/#{filenane}", 'wb+') do |file|
file << open(url).read

end

end

api _key = ARGV[0]

testcloud_json_file = ARGV 1]

#api _key = "xxx

#testrun_id = "xx

testrun_id = JSON. parse(File.readlines(testcloud_json_file).last)["test_run_id"]
zipfile_name = "results. zip"

client = Xamarin::TestC oud:: Api::V0::dient.new api _key)
while !client.test_runs.results(testrun_id).finished
puts "waiting for results..."
sleep 5
end
results = client.test_runs.results(testrun_id)

File.unlink zipfile_name
tnp_dir = Dir.nktnmpdir
begi n
results. | ogs. devices. each do || og_device|
downl oad_fil e(l og_devi ce. cucunber _json, tnp_dir, "#{l og_device.device_configuration_id}.json")
end
input_filenames = Dir.entries("#{tnp_dir}").select {|f| 'File.directory? f}
Zip::File. open(zipfile_name, Zip::File::CREATE) do |zipfile|
i nput _fil enanes. each do |fil enane|
zipfile.add(filenane, tnp_dir + '/' + filenane)

end
end
ensur e
FileWils.renove_entry tnp_dir
end

Creating a zip file with all Cucumber JSON reports:

obtain_tc_results.rb a80654b0da3638a999a235e7b31d1111 test-cloud.json

After importing the results using the REST API, the execution screen details will provide information on the test run result, grouped by device.

The Context section will be by filled out with the name of the original Cucumber JSON report; in this case, it's the name/id of the device.

https://docs.getxray.app/display/XRAY31/Import+Execution+Results+-+REST#ImportExecutionResultsREST-MultipleExecutionResults

ABC / Test Execution: ABC-132 / Test: ABC-131
Message banner after startup

SCENANo 1ype; Scenano

Export to Cucumber A Return to Test Execution

Scenario 1 when I wait for 2 seconds

2 Then I see "Hello World!"|

Results

Context Error Message Duration Status
htc_desire_510-44.3 0 millisec “
(D Learn more

Please refer to Testing with Cucumber for an overview on how to use Cucumber Tests with Xray.

References

https://developer.xamarin.com/guides/testcloud/calabash/
https://developer.xamarin.com/guides/testcloud/introduction-to-test-cloud/
https://github.com/calabash/calabash-android
https://github.com/calabash/calabash-ios
http://bitbar.com/how-to-setup-and-get-started-with-calabash/
https://github.com/xamarin/test-cloud-samples
https://github.com/rubyzip/rubyzip
https://testcloud.xamarin.com/api_docs/index.html#apps
https://testcloud.xamarin.com/swagger/index.html

Automated Tests (Import/Export)

Exporting Cucumber Tests - REST

https://developer.xamarin.com/guides/testcloud/calabash/
https://developer.xamarin.com/guides/testcloud/introduction-to-test-cloud/
https://github.com/calabash/calabash-android
https://github.com/calabash/calabash-ios
http://bitbar.com/how-to-setup-and-get-started-with-calabash/
https://github.com/xamarin/test-cloud-samples
https://github.com/rubyzip/rubyzip
https://testcloud.xamarin.com/api_docs/index.html#apps
https://testcloud.xamarin.com/swagger/index.html
https://docs.getxray.app/pages/viewpage.action?pageId=27538337
https://docs.getxray.app/display/XRAY31/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAY31/Testing+with+Cucumber

	Testing using Calabash and Xamarin Test Cloud in Ruby

