Integration with TeamCity (legacy)

1 These instructions are deprecated!

Xray provides a free plugin for TeamCity. Please use it instead, as described in Integration with TeamCity.

It is easy to setup TeamCity in order to integrate it with Xray.

Since Xray provides a full REST API, you may interact with Xray, for submitting results for example.

® JUnit example
© Run automated tests
© Import execution results
® Cucumber example
© Exporting Cucumber features
© Run Cucumber scenarios
© Import execution results

JUnit example

In this scenario, we want to get visibility of the automated test results from some tests implemented in Java, using the JUnit framework.

This recipe could also be applied for other frameworks such as NUnit or Robot.

https://docs.getxray.app/pages/viewpage.action?pageId=35359994

CalcTest.java

package com xpand. j ava;

inport org.junit.After;
import org.junit.Before;
import org.junit. Test;

import static org.hantrest. CoreMatchers.is;
inport static org.junit.Assert.assertThat;

public class Cal cTest {

@efore
public void setUp() throws Exception {

}

@fter
public void tearDown() throws Exception {

}

@est

public void CanAddNunbers()

{
assert That (Cal cul ator. Add(1, 1), is(2));
assert That (Cal cul ator. Add(-1, 1), is(0));

@est

public void CanSubtract ()

{
assert That (Cal cul ator. Subtract (1, 1), is(0));
assert That (Cal cul ator. Subtract (-1, -1), is(0));
assert That (Cal cul ator. Subtract (100, 5), is(95));

@est

public void CanMil tiply()

{
assertThat (Cal cul ator. Mul tiply(1l, 1), is(1));
assertThat (Cal cul ator. Mul tiply(-1, -1), is(1));
assert That (Cal cul ator. Mul ti pl y(100, 5), is(500));

public void CanDi vide()

{
assertThat (Cal cul ator. Divide(1, 1), is(1));
assertThat (Cal cul ator. Divide(-1, -1), is(1));
assert That (Cal cul ator. Di vi de(100, 5), is(20));

}

@est

public void CanDoStuff ()

{
assertThat (true, is(true));

}

In order to submit those results, we'll just need to invoke the REST API (as detailed in Import Execution Results - REST).

Run automated tests

Our project is Maven based, therefore the first Build Step compiles and runs the JUnit automated tests.

B Projects |v Changes Agents 1 [] Build Queue 0 admin|v Administration Q
Administration / 82 <Root project> / 82 java-junit-calc Run ... |Actions~ | Build Configuration Home
1 Build

General Settings Build Steps

Version Control Settings 1 In this section you can configure the sequence of build steps to be executed. Each build step is represented by a build runner and provides integration with a specific build or test tool. €]

Build Steps 2 + Add build step Reorder build steps 7 Auto-detect build steps

Triggers 1

Build Step Parameters Description

Failure Conditions
Build Features 1. Maven Path to POM: java-junit-calc/pom.xml| Edit = v
Goals: clean test

Dependencies
Execute: If all previous steps finished successfully

Parameters 3

i
Ll

2. Import results to Xray Command Line Edit =
Custom script: curl -H "Content-Type: multipart/form-da...
Execute: Even if some of the previous steps failed

Agent Requirements

Last edited 14 hours ago
by admin (view history)

Build Step (1 of 2): Maven |+

Runner type: Maven
Runs Maven builds

Step name:
Optional, specify to distinguish this build step from other steps.
Goals: clean test
Space-separated goals to execute.
Path to POM file: java-junit-calc/pom.xml]

The specified path should be relative to the checkout directory.
Code Coverage

Choose coverage runner: <No coverage>

#~ Show advanced options

Import execution results

In order to submit the results, we'll need to add a Build Step of type "Command Line", where we'll invoke the REST API, submitting the JUnit XML report
generated in the previous step.

https://docs.getxray.app/display/XRAY32/Import+Execution+Results+-+REST

Build Step (2 of 2): Import results to Xray |« + Add bui

Runner type: Command Line
Simple command execution

Step name: Import results to Xray
Optional, specify to distinguish this build step from other steps.

Execute step:® Even if some of the previous steps failed

Specify the step execution policy.

Working directory: @

-
e

Optional, set if differs from the checkout directory.
Run: Custom script

Custom script: * Enter build script content:

curl -H "Content-Type: multipart/form-data" -u %jira_user%:%jira_password%s —-F "file=@java-j =

A platform-specific script, which will be executed as a .cmd file on Windows or as a shell script in Unix-like environments.

Format stderr output as: | warning %/

The complete script content of the "custom script” field above is:

curl -H "Content-Type: nultipart/formdata" -u %ira_user% %ira_password%-F "file=@ava-junit-calc/target
/surefire-reports/ TEST-com xpand. j ava. Cal cTest.xml " "% ira_base_url % rest/raven/1.0/inport/execution/junit?
proj ect Key=CALC&f i xVer si on=v3. 0&r evi si on=1234"

We're using "curl” utility that comes in Unix based OS'es but you can easily use another tool to make the HTTP request.

Notice that we're using some parameters for storing Jira's base URL along with the credentials to be used in the REST API.

Actually, these parameters can be defined at multiple levels; in our example we defined them at the "Build Configuration" level but they could also have
been defined at the project level.

Administration / 35 <Root project> / a8 java-junit-calc

Build

General Settings 4+ Add new parameter
Version Control Settings 1 . .
Build Steps 2 Configuration Parameters
i Configuration parameters are not passed into build, can be used in references only.®
Triggers 1
Failure Conditions Name Value
Build Features jira_base_url http://192.168.56.102
Dependencies jira_password R
Parameters 3
jira_user admin

Agent Requirements

The parameters can be hidden, such as the password, if you defined them as being of type "Password".

Edit parameter specification

¢ Label:

H Custom label to be shown in custom run build dialog
" instead of parameter name

Description: Jira password

Description to be shown in custom run build dialog

<
—/

Display: [Normal

Use 'Hidden' to hide parameter from custom run dialog.

1 Use 'Prompt’ to force custom run dialog with the |
parameter displayed on every build start.

i Read-only:
i Make the parameter impossible to override with another u
value

<«
—

Type: * [Password

| No options are available for chosen type

Cucumber example

In this scenario, we are managing the specification of Cucumber Scenarios/Scenario Outline(s) based tests in Jira, as detailed in the "standard workflow
mentioned in Testing with Cucumber

Then we need to extract this specification from Jira (i.e. generate related Cucumber .feature files), and run it in TeamCity against the code that actually
implements each step that are part of those scenarios.

Finally, we can then submit the results back to JIRA and they'll be reflected on the related entities.

Overall, our Build Configuration is composed of 3 basic steps.

Administration / 528 <Root project> / 55 cucumber_xray_tests-local-git Run ...
[Build
General Settings Build Steps
Version Control Settings 1 In this section you can configure the sequence of build steps to be executed. Each build step is represented by a build runner and provides integration with a
Build Steps 3 + Add build step Reorder build steps 7 Auto-detect build steps
Triggers 1
Build Step Parameters Description

Failure Conditions
Build Features 1. export cucumber features Command Line
Custom script: curl -u admin:admin "http://192.168.56.1... (and 1 more line)

Dependencies
Execute: If all previous steps finished successfully

Parameters
Agent Requirements 2. run cucumber scenarios Command Line
Custom script: #!/bin/bash --login (and 4 more lines)
Last edited 16 hours ago Execute: If all previous steps finished successfully
by admin (view history))
3. Import results to Xray Command Line

Custom script: curl -v -H "Content-Type: application/js...
Execute: Even if some of the previous steps failed

Exporting Cucumber features

We start by extracting the tests specification out of JIRA and generate the proper .feature files.

The export can take as input issue keys of requirements, Test Executions, Test Plans or a filter id, which will be the one we'll use.

https://docs.getxray.app/display/XRAY32/Testing+with+Cucumber

For this, we'll invoke the REST API (Exporting Cucumber Tests - REST) in order to obtain a .zip file containing the .feature files.

We'll be using a Build Step of type "Command Line" for this purpose, along with "curl" utility to ease making the HTTP request.

Build Step (1 of 3): export cucumber features |+

Runner type: Command Line

Simple command execution

Step name: export cucumber features
Optional, specify to distinguish this build step from other steps.

Execute step:® If all previous steps finished successfully

Specify the step execution policy.

Working directory: @ cucumber_xray_tests

Optional, set if differs from the checkout directory.

Run: Custom script

Custom script: * Enter build script content:
curl —-u %jira_user%:%jira_password% "%jira_base_url
unzip -o features/features.zip -d features/

The complete script content of the "custom script” field above is:

curl -u %ira_user®%ira_password% "% ira_base_url %rest/raven/ 1.0/ export/test?filter=11400&f z=true" -0
features/features.zip
unzip -o features/features.zip -d features/

Notice that we're unzipping the .feature files to a local directory, so we're able to run them.

Run Cucumber scenarios

The exact syntax for running the Cucumber scenarios depends on the Cucumber implementation being used; in this case we're using Ruby's variant.

Therefore we're basically just invoking "cucumber”" command with an option to generate a JSON report (e.g. "data.json").

Build Step (2 of 3): run cucumber scenarios |~

Runner type: Command Line

Simple command execution

Step name: run cucumber scenarios
Optional, specify to distinguish this build step from other steps.

Execute step:? If all previous steps finished successfully

Specify the step execution policy.

Working directory: @ cucumber_xray_tests

Optional, set if differs from the checkout directory.

Run: Custom script
Custom script: * Enter build script content:
#!/bin/bash —-login
rvm use 2.3
cucumber -x —f json —o data.json || :
You may have noticed a trick in the cucumber line above, in the end of the command (i.e. “.... || :"). That ensures that cucumber returns with exit code O (i.

e. success), so the build may proceed.

https://docs.getxray.app/display/XRAY32/Exporting+Cucumber+Tests+-+REST

Import execution results

In order to submit the results, we'll need to add a Build Step of type "Command Line", where we'll invoke the REST API, submitting the Cucumber JSON
report generated in the previous step.

We also make sure this step is called always.

Build Step (3 of 3): Import results to Xray |«

Runner type: Command Line

Simple command execution

Step name: Import results to Xray

Optional, specify to distinguish this build step from other steps.

Execute step:® Even if some of the previous steps failed

Specify the step execution policy.

Working directory: @ cucumber_xray_tests

Optional, set if differs from the checkout directory.

Run: Custom script

Custom script: * Enter build script content:

curl =v =H "Content-Type: application/json" =X POST

The complete script content of the "custom script” field above is:

curl -v -H "Content-Type: application/json" -X POST -u %ira_user% %ira_password% --data @lata.json "%
jira_base_url%rest/raven/ 1. 0/inport/execution/cucunber”

You may notice that we're using some parameters related with the Jira server, that we've configured at project level.

@ Please note

The user present in the configuration below must exist in the JIRA instance and have permission to Create Test and Test Execution Issues

Xray provides a free plugin for TeamCity. Please use it instead, as described in Integration with TeamCity (legacy).
Administration / 55 <Root project>

cucumber_xray_tests-local-git i 1infoitem

General Settings + Add new parameter
VCS Roots 1 . .
Report Tabs (i Configuration Parameters
Configuration parameters are not passed into build, can be used in references only.®

Parameters 3
Builds Schedule Name Value
Connections jira_base_url http://192.168.56.102
e jira_password ok
Meta-Runners

jira_user admin

Maven Settings

	Integration with TeamCity (legacy)

