Integration with Jenkins

® Overview
® Release Notes
® [nstallation
© Manual Installation
® Configuration
o Jira servers
® Creating a new Project
® Build Steps
O Xray: Cucumber Features Export Task
= Configuration
© Xray: Cucumber Features Import Task
o Xray: Results Import Task
= Configuration
= Additional fields
® Examples
© Cucumber
® Exporting Cucumber features
® |mporting Cucumber features
" |mporting the execution results
® |Importing the execution results with user-defined field values
© JUnit
® |mporting the execution results
® Pipeline projects support
© Examples
= JUnit
® Cucumber ("standard" workflow)
= Cucumber ("VCS/Git based" workflow)
© Recommendations
® Troubleshooting
© The build process is failing with status code 403

Overview

Xray enables easy integration with Jenkins through the "Xray for JIRA Jenkins Plugin®, providing the means for successful Continuous Integration by
allowing users to report automated testing results.

Release Notes

Xray for JIRA Jenkins Plugin 1.3.0 Release Notes
Xray for JIRA Jenkins Plugin 1.2.1 Release Notes
Xray for JIRA Jenkins Plugin 1.2.0 Release Notes
Xray for JIRA Jenkins Plugin 1.1.0 Release Notes
Xray for JIRA Jenkins Plugin 1.0.0 Release Notes

Installation

https://docs.getxray.app/display/XRAY31/Xray+for+JIRA+Jenkins+Plugin+1.3.0+Release+Notes
https://docs.getxray.app/display/XRAY31/Xray+for+JIRA+Jenkins+Plugin+1.2.1+Release+Notes
https://docs.getxray.app/display/XRAY31/Xray+for+JIRA+Jenkins+Plugin+1.2.0+Release+Notes
https://docs.getxray.app/display/XRAY31/Xray+for+JIRA+Jenkins+Plugin+1.1.0+Release+Notes
https://docs.getxray.app/display/XRAY31/Xray+for+JIRA+Jenkins+Plugin+1.0.0+Release+Notes

The installation is made manually. For more information on how to install add-ons, please refer to how to install add-ons.

@ Requirements

The Jenkins baseline for this app is v2.60.3 and it may not work properly with previous versions.

Manual Installation

@ Download the latest version of the Jenkins Plugin

You may download the latest version of the Jenkins plugin from the latest Release Notes.

If you have the actual xr ay-for-jira-connector. hpi file,
1. Go to the Update Center of Jenkins in Manage Jenkins > Manage Plugins.

2. Select the advanced tab
3. In the Upload Plugin section, click upload and select the file xr ay-for-j i ra- connect or. hpi file.

Configuration

Xray for Jenkins is configured in the global settings configuration page Manage Jenkins > Configure System > Xray for Jira configuration.

Jira servers
The Jira servers configuration defines connections with Jira instances.
To add a new Jira instance connection, you need to specify some properties:
1. Configuration alias
2. Server Address: The address of the Jira Server where Xray is running
3. Authentication:
a. User: username
b. Password.

note: the Configuration ID is not editable. This value can be used in the pipelines scripts.

@ Please note

The user present in this configuration must exist in the JIRA instance and have permission to Create Test and Test Execution Issues

https://jenkins.io/doc/book/managing/plugins/

Xray for JIRA configuration
JIRA servers Configuration ID 2fic3a3e-982f-4279-abcd-e9301fed7bed

Configuration alias Xray instance

Serveraddiess by iocahost: 8080

Username ik

Password

Test Connection

Delete instance

Configuration ID 28788e67-ae2a-4217-9308-7e638s2eb1dc

Configuration alias Xray instance 2

Server addiess s ocalhost 9090

Username —

Password | -

Test Connection

Creating a new Project

The project is where the work that should be performed by Jenkins is configured.
For this app, you can configure:

® Freestyle projects

® Maven Projects

® Multi-configuration Projects

® Pipeline Projects

. In the home page, clicking for example New Item > Freestyle project, provide a name, and then click OK.

Enter an item name

‘ Xray projecﬂ

4 Freestyle project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be even used for something other than software build.

Pipeline
Orchestrates long-running activities that can span muttiple build slaves. Suitable for building pipelines (formerly known as workflows) andvor organizing complex activities that do not easily fit in free-style job type.

N

External Job

This type of job allows you to record the execution of a process run outside Jenkins, even on a remote machine. This is designed so that you can use Jenkins as a dashboard of your existing automation system

Multi-configuration project
Suitable for projects that need a large number of different configurations, such as testing on muitiple environments, platform-specific builds, efc.

Folder

Creates a container that stores nested items in it. Useful for grouping things together. Unlike view, which is just a filter, a folder creates a separate namespace, S0 you can have multipie things of the same name as
long as they are in different folders.

GitHub Organization

%
-

Scans a GitHub organization (or user account) for all repositories matching some defined markers.

P

Multibranch Pipeline

1%
A

}tl Creates a set of Pipeline projects according to detected branches in one SCM repository.

-

if you want to create a new item from other existing, you can use this option

N

@‘ Copy from ‘ Type to autocomplete

=]

Build Steps

Build steps are the building blocks of the build process. These need to be defined in the project configuration.
The app provides
® one build step for exporting Cucumber Scenario/Scenario Outlines from Jira as .feature files

® one build step for importing Cucumber Tests from existing Cucumber features into Jira.
® one post-build action which publishes the execution results back to Jira, regardless of the build process status.

@ Please note

The fields of the tasks may take advantage of the Jenkins Environment variables, which can be used to populate fields such as the "Revision"
for specifying the source code's revision. For more information, please see Jenkins set environment variables.

Xray: Cucumber Features Export Task

This build step will export the Cucumber Tests (i.e., Scenario/Scenario Outlines) in .feature or bundled in a .zip file. The rules for exporting are defined here.

It invokes Xray's Export Cucumber Tests REST API endpoint (see more information here).

Configuration

Some fields need to be configured in order to export the Cucumber Tests. As input, you can either specify issue keys (see the endpoint documention here)
or the ID of the saved filter in Jira.

field description
Jira The Jira instance where Xray is running
instan
ce

Issue Set of issue keys separated by ";"

keys

Filter A number that indicates the filter ID

ID

File The relative path of the directory where the features should be exported to; normally, this corresponds to the "features" folder of the Cucumber
path project that has the implementation steps. Note: The directory will be created if it does not exist.

Xray: Cucumber Features Import Task

This build step will import existing cucumber Tests from existing Cucumber feature files into Xray issues. This Task will import from .feature files and also
from .zip files.

It invokes Xray's Import Cumcumber Tests REST API endpoint (see more information here)

field decription
JIRA instance The Jira instance where Xray is running.
Project Key This is the project where the Tests and Pre-Conditions will be created/updated.

Cucumber feature files directory = This is the directory containing your feature files. All the files in this directory and sub directories will be imported.

Modified in the last hours By entering an integer n here, only files that where modified in the last n hours will be imported.
Leave empty if you do not want to use this parameter.

Xray: Results Import Task

The app provides easy access to Xray's Import Execution Results REST API endpoints (see more information here). Therefore, it mimics the endpoints
input parameters.

It supports importing results in Xray's own JSON format, Cucumber, Behave, JUnit, and NUnit, among others.
Using a glob expression, you can import multiple results files in the following formats:

® JUnit

https://docs.getxray.app/display/XRAY31/Export+Cucumber+Features
https://confluence.xpand-addons.com/display/XRAY/Exporting+Cucumber+Tests+-+REST
https://confluence.xpand-addons.com/display/XRAY/Exporting+Cucumber+Tests+-+REST
https://confluence.xpand-addons.com/display/XRAY32/Importing+Cucumber+Tests+-+REST
https://confluence.xpand-addons.com/display/XRAY/Import+Execution+Results+-+REST
https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-belowJenkinsSetEnvironmentVariables

® TestNG
® NUnit
® Robot framework

For those formats, the file path needs to be relative to the workspace.

Configuration

field description
Jira instance The Jira instance where Xray is running
Format A list of test result formats and its specific endpoint

Execution Report File = The results relative file path
Note: glob expressions are supported for

JUnit
TestNG
NUnit

L]
L]
L]
® Robot framework

Additional fields

Depending on the chose test result format and endpoint, some additional fields may need to be configured.

format and field description
specific
endpoint

Behave JSON Test execution An object (JSON) specifying the fields for the issue. You may specify the object either directly in the field or
multipart fields in the file path.

Cucumber JSON
multipart

NUnit XML
multipart

@ Learn more

JUnit XML multipart .) . . . o
The custom field IDs can be obtained using the Jira REST API Browser tool included in Jira. Each

Robot XML ID is of the form "customfield_ID".

multipart . . L
Another option, which does not require Jira administration rights, is to invoke the "Get edit issue

TestNG XML meta" in an existing issue (e.g., in a Test issue) as mentioned here.

multipart

Example: GET http://yourserver/rest/api/2/issue/CALC-1/editmeta

Import to Same When this option is check, if you are importing multiple execution report files using a glob expression, the
Test Execution results will be imported to the same Test Execution
NUnit XML
Project key Key of the project where the Test Execution (if the Test Execution Key field wasn't provided) and the Tests
JUnit XML (if they aren't created yet) are going to be created
Robot XML Test execution Key of the Test Execution
key
TestNG XML
Test plan key Key of the Test Plan

Test environments | List of Test Environments separated by ";"
Revision Source code's revision being target by the Test Execution

Fix version The Fix Version associated with the test execution (it supports only one value)

Examples

https://docs.atlassian.com/jira/REST/server/#api/2/issue-getEditIssueMeta
http://yourserver/rest/api/2/issue/CALC-1/editmeta

Cucumber

In a typical Cucumber Workflow, after having created a Cucumber project and the Cucumber tests specified in Jira, you may want to have a project that ex
ports the features from Jira, executes the automated tests on a Cl environment and then imports back its results.

For this scenario, the Jenkins project would be configured with a set of tasks responsible for:

Pulling the Cucumber project

Exporting Cucumber features from Jira to your Cucumber project
Executing the tests in the Cl environment

Importing the execution results back to Jira

rwnE

Exporting Cucumber features

To start the configuration, add the build step Xray: Cucumber Features Export Task.

Add build step -

Execute Windows batch command
| Execute shell
Invoke Ant
Invoke Gradle script
Invoke top-level Maven targets
Fun with timeout
Set build status to "pending” on GitHub commit

’Kray: Cucumber Features Export Task

After that, configure it.

In this example, we configured the task to extract the features from a set of issues (PROJ-78 and PROJ-79) to the folder that holds the Cucumber project.

Xray: Cucumber Features Export Task L
JIRA Instance Xray local ¥
Issues: PROJ-78;PROJ-79
Filter:

File Path: features

Importing Cucumber features

To start the configuration, add the build step Xray: Cucumber Features Import Task.

http://confluence.xpand-addons.com/display/XRAY/Testing+with+Cucumber

Build

Add build step -

FailureBuilder

Invoke Ant

Invoke: Gradle script

Invoke top-level Maven targeis

MockBuilder

Run with timeout

Sef build status to "pending” on GitHub commit
SleepBuilder

UnsiableBuilder

Xray: Cucumber Fealures Export Task

Xray: Cucumber Features Import Task I

| = |

After that, configure it.

In this example, we configured the task to import to the Project IF of the Xray instance all the .features and .zip files that are contained in \Cucumber
directory and sub directories, which were modified in the last 3 hours.

Build

Xray: Cucumber Features Import Task
Jira Instance Xray instance v
Project Key IF

Cucumber feature files directory | \Cucumber

® © ®© 8

Modified in the last hours 3

Add build step ~

Importing the execution results

To start the configuration, add the post-build action Xray: Results Import Task.

Aggregate downstream test results
Archive the artifacts

Build other projects

Publish JUnit test result report

Publish Javadoc

Record fingerprints of files to track usage
Git Publisher

E-mail Matification

Editable Email Motification

Set GitHub commit status (universal)
Set build status on GitHub commit [deprecated]

’ ¥ray: Results Import Task

Delete workspace when build is done

Add post-build action -

After that, configure it.

In this example, we configured the task to import the Cucumber JSON results back to Jira.

Xray: Results Import Task n
JIRA Instance | Xray local -
Format Cucumber JSON .
Parameters
Execution Report File (file path with file name) | report.json
Once all configurations are done, click Save at the bottom of the page.
After running the job, the expected result is a new Test Execution issue created in the Jira instance.
Project: All~ Type: All~ Status: All~ Assignee: All + | Contains text More ~ Q Advanced =~
Created Date: Within the last... ~
1-10f1°5 Columns «
T Key Summary Tests association with a Test Execution Status Created + Updated
[PROJ-177 Execution results [1483077439985] PROJ-79 PROJ-78 OPEN 09/Mar/17 09/Mar/17
1-10f1 5

Importing the execution results with user-defined field values

For Cucumber, Behave, JUnit, Nunit and Robot, Xray for Jenkins allows you to create new Test Executions and have control over newly-created Test
Execution fields. You can send two files, the normal execution result file and a JSON file similar to the one Jira uses to create new issues. More details
regarding how Jira creates new issues here.

For this scenario and example, the import task needs to be configured with the Cucumber JSON Multipart format. When selecting this option, you can
additionally configure the Test Execution fields in one of two ways:

® Insert the relative path to the JSON file containing the information, or
® [nsert the JSON content directly in the field.

https://developer.atlassian.com/jiradev/jira-apis/about-the-jira-rest-apis/jira-rest-api-tutorials/jira-rest-api-example-create-issue

In this example, we configured the following object:

{
"fields": {
"project": {

"key": "PRQI"

},

"summary": "Test Execution for Cucunber results (Generated by job: ${BU LD TAG)",

"issuetype": {
"id": "10102"

}

}

And configured the task to import the Cucumber JSON Multipart results back to Jira.

Xray: Results Import Task

JIRA Instance Xray local

Format Cucumber JSON multipart

Parameters

Execution Report File (file path with file name) report json

Test Execution fields JSON Content

{
"fields™ {
"project™ {
ey RO
+

"summary™ "Test Execution for Cucumber results (Generated by job: ${BUILD TAGH".
"issuetype” {
"id" "10102"
1
}
}

Once all configurations are done, click Save at the bottom of the page.

After running the job, the expected result is a new Test Execution issue created in the Jira instance, with the Test Execution fields as specified in the
Jenkins build step configuration.

Project All~ Type: All~ Status: All > Assignee: All - Morew Q
Created Date: Within the last -

Advanced

11001 %

T Key summary

Columns ~
Tests association with a Test Execution Status Created & Updated Test Envirenments
PROJ-479 Test Execution for Cucumber results (Generated by job” jenkins-Xray Automated Tests-26) PROJ-78

Labels
OPEN

04/Apr1T 04IAp17 None

JUnit

Apart from supporting Cucumber natively, Xray enables you to take advantage of many other testing frameworks like JUnit. In this sense, Xray for Jenkins
lets you import results in other formats besides Cucumber JSON.
If you want to import JUnit XML reports, a typical Job outline would be:

1. Pulling the JUnit project
2. Executing the tests in the ClI environment
3. Importing the execution results, including Tests, to JIRA

Importing the execution results

To start the configuration, add the post-build action Xray: Results Import Task

Aggregate downstream test results
Archive the artifacts

Build other projects

Publish JUnit test result report

Publish Javadoc

Record fingerprints of files to track usage
Git Publisher

E-mail Matification

Editable Email Motification

Set GitHub commit status (universal)

Set build status on GitHub commit [deprecated]

’ ¥ray: Results Import Task

Delete workspace when build is done

Add post-build action -

After that, configure it.

In this example, we have a configuration where the JUnit XML format is chosen.

Xray: Results Import Task

JIRA Instance | Xray local
Format JUnit XML

Parameters
Execution Report File (file path with file name) | Junit/TestResult xmi

Project Key PROJ

Test Execution Key

Test Plan Key

Test Environments Android;|0S;Cordova
Revision

Fix Version

After running the plan, the expected result is a new Test Execution issue created in the JIRA instance.

Project: All> Type: All ¥ Status: All * Assignee: All~ Contains text More ~ Q Advanced

Created Date: Within the last._.

1-10of1 5
T Key Summary Tests association with a Test Execution Status Created ¥ Updated
B PROJ-185 Execution results - TestResult.xml - [1489165846959] PROJ-121 OPEN 10/Mar/17 10/Mar/17
1-10f1 5

You can also import multiple results using a glob expression, like in the following example

Test Environments

Android

Cordova | | 10S

Il
<

Columns ~

Xray: Results Import Task

JIRAInstance xray-tst-docker

Format Junit XML
Parameters
Import to Same Test Execution v
VWhen this option is check, if you are importing multiple execution report files using a glob expression, the
results will be imported to the same Test Execution
Execution Report File (file path with file name) | \myreportst*i* xmi -
Project Key IF

Test Execution Key
Test Plan Key

Test Environments
Revision

Fix Version

Pipeline projects support

Xray for Jenkins provides support for pipelines projects, allowing you to use Xray specific tasks.

Enter an item name

My Pipeline Demo

» Required field

ey
-

Freestyle project

Isto & uma caracteristica central do Jenkins. Jenkins vai construir o seu projecto, combinando qualquer SCIM com qualquer sistema de compilacéo e isto pode ser usado mesmo em qualquer outra
compilacdo de software.

Maven project
Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the configuration.

Pipeline
Orchestrates long-running activities that can span multiple build slaves. Suitable for building pipelines (formerly known as workflows) and/or organizing complex activities that do not easily fit in free-style
job type.

Construir Build projeto com multi-configuragées

! suitable for projects that need a large number of different configurations, such as testing on multiple environments, platform-specific builds, etc

Folder

| Creates a container that stores nested items in it. Useful for grouping things together. Unlike view, which is just a fitter, a folder creates a separate namespace, 5o you can have multiple things of the

same name as long as they are in different folders.

GitHub Organization
Scans a GitHub erganization (or user account) for all repositories matching some defined markers.

Multibranch Pipeline
Creates a set of Pipeline projects according to detected branches in one SCM repository

MockFolder

MockFelder with security control

if you want to create a new item from other existing, you can use this option:

|OK

| rom ‘Typeto autocomplete

Here is a simple example of a pipeline script using the Xray: Cucumber Features Export Task

Jenkinsfile example (declarative)

pi peline {
agent any
stages {
stage(' Export Cucunber') {
steps {
step([$class: ' XrayExportBuilder', filePath: '\\features', issues: 'IF-1', serverlnstance:
' 2f f c3a3e- 9e2f - 4279- abcd- e9301f e47bed'])
}
}

@ Learn more

For Pipeline specific documentation, you may want to give a look at:

® https://jenkins.io/doc/book/pipeline/
® https://jenkins.io/doc/book/pipeline/syntax/#declarative-pipeline
® https://github.com/jenkinsci/pipeline-plugin/blob/master/TUTORIAL.md

Examples

JUnit

This is a declarative example, for JUnit based tests.

Jenkinsfile example (declarative)

pi peline {
agent any
stages {
stage(' Conpile'){
steps {
checkout ([$cl ass: 'G tSCM, branches: [[name: '*/nmaster']], doGenerateSubrmodul eConfigurations:
fal se, extensions: [[$class: 'SparseCheckoutPaths', sparseCheckoutPaths: [[path: 'java-junit-calc/']]]],

subnodul eCfg: [], userRenpteConfigs: [[credentialsld: 'a3285253-a867-4ea7-a843-da349fd36490", url:
'ssh://git@ocal host/home/ git/repos/automation-sanples.git']]])
sh "nvn clean conpile -f java-junit-calc/pomxm"
}
}

stage(' Test'){
st eps{
sh "nvn test -f java-junit-calc/pomxm"

}
}
stage(' I nport results to Xray') {
steps {
step([$cl ass: ' XraylnportBuilder', endpointNane: '/junit', fixVersion: 'v3.0', inportFilePath:
'java-junit-calc/target/surefire-reports/*.xm"', inportToSaneExecution: 'true', projectKey: 'CALC,
serverlnstance: '552d0ch6- 6f 8d- 48ba- bbad- 50e94f 39b722' 1)
}

}

Cucumber ("standard" workflow)

https://jenkins.io/doc/book/pipeline/
https://jenkins.io/doc/book/pipeline/syntax/#declarative-pipeline
https://github.com/jenkinsci/pipeline-plugin/blob/master/TUTORIAL.md

This is a declarative example, for Cucumber tests using the "standard" workflow (see Testing with Cucumber).

Jenkinsfile example (declarative)

pi peline {
agent any
stages {
stage(' Export features from Xray'){
steps {
checkout ([$cl ass: "G tSCM, branches: [[name: '*/master']], doGenerateSubnodul eConfigurations:
false, extensions: [], subnodul eCfg: [], userRenpteConfigs: [[credential sld: 'a3285253-a867-4ea7-a843-
da349fd36490', url: 'ssh://git@ocal host/hone/git/repos/automation-sanples.git']]])
step([$cl ass: ' XrayExportBuilder', filePath: 'cucunber_xray_tests/features', filter: '11400',
serverlnstance: '552d0ch6- 6f 8d- 48ba- bbad- 50e94f 39b722'])
}
}

stage(' Test'){
st eps{
sh "cd cucunber_xray_tests && cucunber -x -f json -o data.json"
}
}

stage(' I nport results to Xray') {
steps {
step([$class: ' Xrayl nportBuilder', endpointNane: '/cucunber', inportFilePath:
' cucunber _xray_tests/data.json', serverlnstance: '552d0cb6- 6f8d-48ba- bbad-50e94f39h722'])
}
}

Cucumber ("VCS/Git based" workflow)

This is a declarative example, for Cucumber tests using the "VCS/Git based" workflow (see Testing with Cucumber).

https://docs.getxray.app/display/XRAY31/Testing+with+Cucumber
https://docs.getxray.app/display/XRAY31/Testing+with+Cucumber

Jenkinsfile example (declarative)

pi peline {
agent any
stages {
stage(' Synch (update) recent tests to Xray')({
steps {
checkout ([$cl ass: 'G tSCM, branches: [[name: '*/master']], doGenerateSubnodul eConfigurations:
fal se, extensions: [], subnoduleCfg: [], userRenpteConfigs: [[credentialsld: 'a3285253-a867-4ea7-a843-
da349f d36490', url: 'ssh://git@ocal host/hone/git/repos/automation-sanples.git']]])
step([$class: ' Xrayl nport FeatureBuil der', folderPath: 'cucunber_xray_tests/features',
| ast Modi fied: '10', projectKey: 'CALC, serverlnstance: '552d0ch6- 6f 8d-48ba- bbad-50e94f39b722'])
}
}

stage(' Export features from Xray'){
steps {
checkout ([$cl ass: 'G tSCM, branches: [[name: '*/master']], doGenerateSubnodul eConfigurations:
fal se, extensions: [], subnodul eCfg: [], userRenpoteConfigs: [[credential sld: 'a3285253-a867-4ea7-a843-
da349fd36490', url: 'ssh://git@ocal host/hone/git/repos/automation-sanples.git']]])
sh "rm-rf cucunber_xray_tests/features”
step([$cl ass: ' XrayExportBuilder', filePath: 'cucunber_xray_tests/features', filter: '11400',
serverlnstance: '552d0ch6- 6f 8d- 48ba- bbad- 50e94f 39b722'])
}
}

stage(' Test'){
st eps{
sh "cd cucunber_xray_tests && cucunber -x -f json -o data.json"

}

}

stage(' Inport results to Xray') {
steps {

step([$class: ' Xrayl nportBuilder', endpointNanme: '/cucunber', inportFilePath:
'cucunber _xray_tests/data.json', serverlnstance: '552d0cb6- 6f 8d- 48ba- bbad- 50e94f 39b722'])

}

}

}
}
Recommendations

You can automatically generate your step scripts using the Jenkins Snippet Generator.

Jenkins My Pipeline Demo

4 Back to Dashboard
i Pipeline My Pipeline Demo
= Changes

&) Build Now

() Eliminar Pipeline 0o
& Recent Changes
. g/’i-—
Configurar —

Full Stage View
) Pipeiing Syntay — —ij—— Stage View

Histérico de builds tendéncia = Declatave: Export
Checkout

o SCM Cucumber

& #5 12/ulf2018 10:54 45 673ms
@ # 2z -4 -
@ # 2fuli2018 10:4 #5

@ Xavier Femandes | sair

Jenkins My Pipeline Demo » Pipeline Syntax
b Back Overview
/% Snippet Generator g This Snippet Generator will help you leam the Pipeline Script code which can be used to define various steps. Pick a step you are interested in from the list, configure it click Generate Pipeline Seript, and you will see a Pipeline Script statement that would call
© 5 ek the step with that configuration. You may copy and paste the whole statement into your script, or pic up just the options you care about. (Most parameters are optional and can be omited in your script, leaving them at default values.)
steps
€) Global Variables Reference
Sample SteP step: General Build Step v
© Oniine Documentation
IntelliJ IDEA GDSL
®
= BUldSIep xray: Cucumber Features Export Task v
JIRAINSIENCE Xray instance v
Issues: 11 ®
Fifter ©
Fle Pl \reatires L]

Click here for more details

Genesate Pipeline: Script

step([$class: 'XrayExportBuilder, filePath: "\features!, issues: 'IF-1', serverinstance: '2fc3a3e-9e21-4279-abcd-e930 1fed 7bed])

Global Variables

There are many features of the Pipeline that are not steps. These are often exposed via global variables, which are not supported by the snippet generator. See the Global Variables Reference for details.

This is the simplest way to generate your step script, and we strongly recommend the use of this snippet due to the complexity of some task related
parameters.

Troubleshooting

The build process is failing with status code 403

When you check the log, it has the following:

Q Console Output

Started by user admin
Building in workspace C:\Users\DMDU\.jenkins‘workspace\Xray Lutomated Tests
Starting export task...

FREFF R R R R R R R
####¢ Hray for JIRR is exporting the feature files ####
e R R
PROJ-T8; PROJ-T9
Task failed
. ERRCR: Unable to confirm Result of the downleoad..... Download Failed! Status:403 Response:

By default, when you successively try to log into Jira with the wrong credentials, the Jira instance will prompt you to provide a CAPTCHA the next time you
try to log in. It is not possible to provide this information via the build process, so it will fail with status code 403 Forbidden.

You will need to log into Jira via the browser and provide the CAPTCHA.

WJIRA Dashboards - DbConsole a @ @~ Logi

Welcome to JIRA

Sorry, your usemame and password are incorrect - please try again

Username | CI_user

Password

(2J Remember my login on this computer

s
]

-

Not a member? To request an account, please contact your
JIRA administrators.

Login | Can'taccess your account?

If you are a Jira administrator, you can go to Jira administration > User Management and reset the failed login.

CI_User Cl_User Count: 9 Jira-software-users JIRA Software JIRA Internal Directory Edit
user@example.com Last: Today 1:55 PM

CAPTCHA required at next login
Last failed login: Today 1:57 PM
Current failed logins: 7

Total failed logins: 21

* Reset failed login count

	Integration with Jenkins

