
Integration with GitLab
GitLab is a well-known CI/CD tool available on-premises and as SaaS.

Xray does not provide yet a plugin for GitLab. However, it is easy to setup GitLab in order to integrate it with Xray Cloud.

Since Xray provides a full REST API, you may interact with Xray, for submitting results for example.

Integration scenarios
JUnit example

Robot Framework example
Cucumber example

Standard workflow (Xray as master)
VCS workflow (Git as master)

Triggering automation from Xray side

Integration scenarios

JUnit example

In this scenario, we want to get visibility of the automated test results from some tests implemented in Java, using the JUnit framework.

This recipe could also be applied for other frameworks such as NUnit or Robot (if supported).

We need to setup a Git repository containing the code along with the configuration for GitLab build process.

The tests are implemented in a JUnit class as follows.

CalcTest.java

package com.xpand.java;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import static org.hamcrest.CoreMatchers.is;
import static org.junit.Assert.assertThat;

public class CalcTest {

 @Before
 public void setUp() throws Exception {

 }

 @After
 public void tearDown() throws Exception {

 }

 @Test
 public void CanAddNumbers()
 {
 assertThat(Calculator.Add(1, 1), is(2));
 assertThat(Calculator.Add(-1, 1), is(0));
 }

 @Test
 public void CanSubtract()
 {
 assertThat(Calculator.Subtract(1, 1), is(0));
 assertThat(Calculator.Subtract(-1, -1), is(0));
 assertThat(Calculator.Subtract(100, 5), is(95));
 }

 @Test
 public void CanMultiply()
 {
 assertThat(Calculator.Multiply(1, 1), is(1));
 assertThat(Calculator.Multiply(-1, -1), is(1));
 assertThat(Calculator.Multiply(100, 5), is(500));
 }

 public void CanDivide()
 {
 assertThat(Calculator.Divide(1, 1), is(1));
 assertThat(Calculator.Divide(-1, -1), is(1));
 assertThat(Calculator.Divide(100, 5), is(20));
 }

 @Test
 public void CanDoStuff()
 {
 assertThat(true, is(true));
 }

}

The GitLab configuration file l contains the definition of the build steps, including running the automated tests and submitting the results..gitlab-ci.ym

.gitlab-ci.yml

Use Maven 3.5 and JDK8
image: maven:3.5-jdk-8

variables:
 # This will supress any download for dependencies and plugins or upload messages which would clutter the
console log.
 # `showDateTime` will show the passed time in milliseconds. You need to specify `--batch-mode` to make this
work.
 MAVEN_OPTS: "-Dmaven.repo.local=.m2/repository -Dorg.slf4j.simpleLogger.log.org.apache.maven.cli.transfer.
Slf4jMavenTransferListener=WARN -Dorg.slf4j.simpleLogger.showDateTime=true -Djava.awt.headless=true"
 # As of Maven 3.3.0 instead of this you may define these options in `.mvn/maven.config` so the same config is
used
 # when running from the command line.
 # `installAtEnd` and `deployAtEnd`are only effective with recent version of the corresponding plugins.
 MAVEN_CLI_OPTS: "--batch-mode --errors --fail-at-end --show-version -DinstallAtEnd=true -DdeployAtEnd=true"

Cache downloaded dependencies and plugins between builds.
To keep cache across branches add 'key: "$CI_JOB_REF_NAME"'
cache:
 paths:
 - .m2/repository

maven_build:
 script:
 - |
 echo "building my amazing repo..."
 mvn test
 export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",
\"client_secret\": \"$client_secret\" }" https://xray.cloud.getxray.app/api/v2/authenticate| tr -d '"')
 echo $token
 curl -H "Content-Type: text/xml" -H "Authorization: Bearer $token" --data @target/surefire-reports/TEST-
com.xpand.java.CalcTest.xml "https://xray.cloud.getxray.app/api/v2/import/execution/junit?projectKey=CALC"
 echo "done"

In order to submit those results, we'll just need to invoke the REST API (as detailed in).Import Execution Results - REST

However, we do not want to have the Xray API credentials hardcoded in GitLab's configuration file. Therefore, we'll use some environment variables
defined in project settings, including:

client_id: the client_id associated with the API key created in the Xray cloud instance
client_secret: the client_secret associated with the API key created in the Xray cloud instance

Please note

The user associated with Xray's API key must have permission to Create Test and Test Execution Issues.

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST

In a "step" must be included that will use "curl" in order to first obtain a token and then finally submit the results to the REST API, using l.gitlab-ci.ym
that token.

export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",\"
client_secret\": \"$client_secret\" }" https://xray.cloud.getxray.app/api/v2/authenticate| tr -d '"')

curl -H "Content-Type: text/xml" -H "Authorization: Bearer $token" --data @target/surefire-reports/TEST-com.xpand.
java.CalcTest.xml "https://xray.cloud.getxray.app/api/v2/import/execution/junit?projectKey=SP"

We're using "curl" utility that comes in Unix based OS'es but you can easily use another tool to make the HTTP request; however, "curl" is provided in the
container used by GitLab.

Robot Framework example
In this scenario, we want to get visibility of the automated test results from some UI tests implemented in Robot Framework (Python) together with
Selenium (using the "robotframework-seleniumlibrary"), and using Chrome for testing.

Triggering automation from Xray

If you aim to trigger automation from Xray/Jira side, please have a look at page Taking advantage of Jira Cloud built-in automation capabilities
where you can see an example of triggering a GitLab pipeline from a Test Plan and reporting results back to it.

https://docs.getxray.app/display/XRAYCLOUD/Taking+advantage+of+Jira+Cloud+built-in+automation+capabilities

We need to set up a Git repository containing the code along with the configuration for GitLab build process.

The tests are implemented in Robot Framework .robot files as follows.

valid_login.robot

*** Settings ***
Documentation A test suite with a single test for valid login.
...
... This test has a workflow that is created using keywords in
... the imported resource file.
Resource resource.robot

*** Test Cases ***
Valid Login
 [Tags] UI
 Open Browser To Login Page
 Input Username demo
 Input Password mode
 Submit Credentials
 Welcome Page Should Be Open
 [Teardown] Close Browser

The GitLab configuration file contains the definition of the build steps, including running the automated tests and submitting the results, .gitlab-ci.yml
as two different stages.

.gitlab-ci.yml

Official language image. Look for the different tagged releases at:
https://hub.docker.com/r/library/python/tags/
image: python:3.12.2

Change pip's cache directory to be inside the project directory since we can
only cache local items.
variables:
 PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip"

https://pip.pypa.io/en/stable/topics/caching/
cache:
 paths:
 - .cache/pip

stages:
 - execute_automated_tests
 - upload_test_results

before_script:
 - python --version ; pip --version # For debugging
 - pip install virtualenv
 - virtualenv venv
 - source venv/bin/activate
 - pip install -r requirements.txt
 - apt-get update

test:
 stage: execute_automated_tests
 before_script: |
 set -e
 apt-get install -yqq unzip curl
 # Install Chrome & chromedriver
 curl -sS -o - https://dl.google.com/linux/linux_signing_key.pub | apt-key add -
 echo "deb https://dl.google.com/linux/chrome/deb/ stable main" >> /etc/apt/sources.list.d/google.list
 apt update && apt install google-chrome-stable -y
 wget -O /tmp/chromedriver.zip https://storage.googleapis.com/chrome-for-testing-public/121.0.6167.85/linux64
/chromedriver-linux64.zip
 ls -la /tmp/chromedriver.zip
 unzip -j /tmp/chromedriver.zip chromedriver-linux64/chromedriver -d /usr/local/bin/
 nohup python demoapp/server.py &
 script: |
 chromedriver -v && \
 pip install -r requirements.txt && \
 robot -x junit.xml -o output.xml login_tests || true
 allow_failure: true
 artifacts:
 paths:
 - output.xml
 when: always

upload_results_to_xray:
 stage: upload_test_results
 script:
 - |
 echo "uploading results to Xray..."
 export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",\"
client_secret\": \"$client_secret\" }" https://xray.cloud.getxray.app/api/v2/authenticate| tr -d '"')
 curl -H "Content-Type: text/xml" -H "Authorization: Bearer $token" --data @"output.xml" "https://xray.
cloud.getxray.app/api/v2/import/execution/robot?projectKey=$project_key"
 dependencies:
 - test

In order to submit those results, we'll just need to invoke the REST API (as detailed in).Import Execution Results - REST

However, we do not want to have the Xray API credentials hardcoded in the GitLab's configuration file. Therefore, we'll use environment variables defined
in the project settings, including:

client_id: the client_id associated with the API key created in the Xray cloud instance
client_secret: the client_secret associated with the API key created in the Xray cloud instance
project_key: the Jira project key

In a "step" must be included that will use "curl" in order to first obtain a token and then finally submit the results to the REST API, using .gitlab-ci.yml
that token.

export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",\"
client_secret\": \"$client_secret\" }" https://xray.cloud.getxray.app/api/v2/authenticate| tr -d '"')

curl -H "Content-Type: text/xml" -H "Authorization: Bearer $token" --data @"output.xml" "https://xray.cloud.
getxray.app/api/v2/import/execution/robot?projectKey=$project_key"

We're using "curl" utility that comes in Unix based OS'es but you can easily use another tool to make the HTTP request; however, "curl" is provided in the
container used by GitLab.

Please note

The user associated with the Xray's API key must have permissions to Create Test and Test Execution Issues.

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST

Cucumber example

Triggering automation from Xray

If you aim to trigger automation from the Xray/Jira side, please have a look at pagTaking advantage of Jira Cloud built-in automation capabilities
e where you can see an example of triggering a GitLab pipeline from a Test Plan and reporting results back to it.

https://docs.getxray.app/display/XRAYCLOUD/Taking+advantage+of+Jira+Cloud+built-in+automation+capabilities

Standard workflow (Xray as master)

In this scenario, we are managing the specification of Cucumber Scenarios/Scenario Outline(s) based tests , as detailed in the "standard in Jira, using Xray
workflow" mentioned in .Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

Then we need to extract this specification from Jira (i.e. generate related Cucumber .feature files), and run it in GitLab against the code that actually
implements each step that are part of those scenarios.

Finally, we can then submit the results back to JIRA and they'll be reflected on the related entities.

The GitLab configuration file l contains the definition of the build steps, including extracting the cucumber specification from Xray, running .gitlab-ci.ym
the automated tests and submitting back the results.

.gitlab-ci.yml

image: "ruby:2.6"

test:
 script:
 - |
 apt-get update -qq
 apt-get install unzip
 gem install cucumber
 gem install rspec-expectations
 export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",
\"client_secret\": \"$client_secret\" }" https://xray.cloud.getxray.app/api/v2/authenticate| tr -d '"')
 curl -H "Content-Type: application/json" --output features/features.zip -X GET -H "Authorization:
Bearer ${token}" "https://xray.cloud.getxray.app/api/v2/export/cucumber?keys=$cucumber_keys"
 mkdir -p features
 rm -f features/*.feature
 unzip -o features/features.zip -d features/
 cucumber -x -f json -o data.json
 curl -H "Content-Type: application/json" -X POST -H "Authorization: Bearer ${token}" --data @data.json
https://xray.cloud.getxray.app/api/v2/import/execution/cucumber
 echo "done"

In this example, we're using a variable defined in the CI/CD project-level settings in GitLab. This variable contains one or more keys of cucumber_keys
the issues that will be used as source data for generating the Cucumber .feature files; it can be the key(s) of Test Plan(s), Test Execution(s), Test(s),
requirement(s). For more info, please see: .Exporting Cucumber Tests - REST

VCS workflow (Git as master)

https://docs.getxray.app/pages/viewpage.action?pageId=31622264
https://docs.getxray.app/display/XRAYCLOUD/Exporting+Cucumber+Tests+-+REST

In this scenario, we are managing (i.e. editing) the specification of Cucumber Scenarios/Scenario Outline(s) based tests as detailed in the outside Jira,
"VCS workflow" mentioned in .Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

The GitLab configuration file l contains the definition of the build steps, including synchronizing the Scenarios/Backgrounds to Xray, .gitlab-ci.ym
extracting the cucumber specification from Xray, running the automated tests and submitting back the results.
.gitlab-ci.yml

image: "ruby:2.6"

test:
 script:

 - |
 apt-get update -qq
 apt-get -y install zip unzip
 gem install cucumber
 gem install rspec-expectations
 export token=$(curl -H "Content-Type: application/json" -X POST --data "{ \"client_id\": \"$client_id\",
\"client_secret\": \"$client_secret\" }" https://xray.cloud.getxray.app/api/v2/authenticate| tr -d '"')

 -H cd features; zip -R features.zip "*.feature"; cd ..; curl -H "Content-Type: multipart/form-data"
"Authorization: Bearer ${token}" -F "file=@features/features.zip"

"https://xray.cloud.getxray.app/api/v2/import/feature?projectKey=CALC"
 mkdir -p features

 rm -f features/*.feature

 curl -H "Content-Type: application/json" --output features/features.zip -X GET -H "Authorization:
Bearer ${token}" "https://xray.cloud.getxray.app/api/v2/export/cucumber?filter=$filter_id"
 unzip -o features/features.zip -d features/
 cucumber -x -f json -o data.json || true
 curl -H "Content-Type: application/json" -X POST -H "Authorization: Bearer ${token}" --data @data.json
https://xray.cloud.getxray.app/api/v2/import/execution/cucumber
 echo "done"

In this example, we're using a variable defined in the CI/CD project level settings in GitLab. This variable contains the of the Jira issues filter_id id
based filter that will be used as source data for generating the Cucumber .feature files; it can be the key(s) of Test Plan(s), Test Execution(s), Test(s),
requirement(s). For more info, please see: .Exporting Cucumber Tests - REST

Triggering automation from Xray side

Please have a look at to see some examples of how automation can be triggered from Xray side.Integration with Automation for Jira

https://docs.getxray.app/pages/viewpage.action?pageId=31622264
https://docs.getxray.app/display/XRAYCLOUD/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAYCLOUD/Taking+advantage+of+Jira+Cloud+built-in+automation+capabilities

	Integration with GitLab

