
Integration with CircleCI
CircleCI is a well-known CI/CD tool available on-premises and as SaaS.

Xray does not provide yet a plugin for CircleCI. However, it is easy to setup CircleCI in order to integrate it with Xray.

Since Xray provides a full REST API, you may interact with Xray, for submitting results for example.

JUnit example
References

JUnit example
In this scenario, we want to get visibility of the automated test results from some tests implemented in Java, using the JUnit framework.

This recipe could also be applied for other frameworks such as NUnit, TestNG or Robot.

We need to setup a project based on a Git repository containing the code along with the configuration for CircleCI build process.

The tests are implemented in a JUnit class as follows.

CalcTest.java

package com.xpand.java;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import static org.hamcrest.CoreMatchers.is;
import static org.junit.Assert.assertThat;

public class CalcTest {

 @Before
 public void setUp() throws Exception {

 }

 @After
 public void tearDown() throws Exception {

 }

 @Test
 public void CanAddNumbers()
 {
 assertThat(Calculator.Add(1, 1), is(2));
 assertThat(Calculator.Add(-1, 1), is(0));
 }

 @Test
 public void CanSubtract()
 {
 assertThat(Calculator.Subtract(1, 1), is(0));
 assertThat(Calculator.Subtract(-1, -1), is(0));
 assertThat(Calculator.Subtract(100, 5), is(95));
 }

 @Test
 public void CanMultiply()
 {
 assertThat(Calculator.Multiply(1, 1), is(1));
 assertThat(Calculator.Multiply(-1, -1), is(1));
 assertThat(Calculator.Multiply(100, 5), is(500));
 }

 public void CanDivide()
 {
 assertThat(Calculator.Divide(1, 1), is(1));
 assertThat(Calculator.Divide(-1, -1), is(1));
 assertThat(Calculator.Divide(100, 5), is(20));
 }

 @Test
 public void CanDoStuff()
 {
 assertThat(true, is(true));
 }

}

The CircleCI configuration file l contains the definition of the build steps, including running the automated tests and submitting the .circleci/config.ym
results.

.circleci/config.yml

version: 2 # use CircleCI 2.0
jobs: # a collection of steps
 build: # runs not using Workflows must have a `build` job as entry point

 working_directory: ~/demo/java-junit-calc # directory where steps will run

 docker: # run the steps with Docker
 - image: circleci/openjdk:8-jdk-browsers # ...with this image as the primary container; this is where all
`steps` will run

 steps: # a collection of executable commands

 - checkout: # check out source code to working directory
 path: ~/demo

 - restore_cache: # restore the saved cache after the first run or if `pom.xml` has changed
 key: circleci-java-junit-calc-demo # circleci-java-junit-calc-demo-{{ checksum "pom.xml" }}

 - run: mvn dependency:go-offline # gets the project dependencies

 - run: mvn test # run the actual tests

 - save_cache: # saves the project dependencies
 paths:
 - ~/.m2
 key: circleci-java-junit-calc-demo # circleci-java-junit-calc-demo-{{ checksum "pom.xml" }}

 - store_test_results: # uploads the test metadata from the `target/surefire-reports` directory so that it
can show up in the CircleCI dashboard.
 path: target/surefire-reports

 - run: 'curl -H "Content-Type: multipart/form-data" -u $jira_user:$jira_password -F "file=@target
/surefire-reports/TEST-com.xpand.java.CalcTest.xml" "$jira_server_url/rest/raven/1.0/import/execution/junit?
projectKey=CALC"'

In order to submit those results, we'll just need to invoke the REST API (as detailed in).Import Execution Results - REST

However, we do not want to have the Xray credentials hardcoded in CircleCI's configuration file. Therefore, we'll use some environment variables defined
in project settings, including:

jira_user: for the Jira username
jira_password: for the Jira user's password
jira_server_url: for the Jira's base URL (e.g. http://yourjiraserver)

Please note

The user present in the configuration below must exist in the JIRA instance and have permission to Create Test and Test Execution Issues.

https://docs.getxray.app/display/XRAY32/Import+Execution+Results+-+REST

In l a "step" must be included that will use "curl" in order to submit the results to the REST API..circleci/config.ym

curl -H "Content-Type: multipart/form-data" -u $jira_user:$jira_password -F "file=@target/surefire-reports/TEST-
com.xpand.java.CalcTest.xml" "$jira_server_url/rest/raven/1.0/import/execution/junit?projectKey=CALC"

We're using "curl" utility that comes in Unix based OS'es but you can easily use another tool to make the HTTP request; however, "curl" is provided in the
container used by CircleCI.

References
https://circleci.com/docs/2.0/configuration-reference/

https://circleci.com/docs/2.0/configuration-reference/

	Integration with CircleCI

