
Usage tips to improve performance

Overview
Background
Common Tips

Jira specifics
Process

Specification
Organizing
Planning
Execution

Entities
Tests
Pre-Conditions
Test Sets
Test Repository
Test Executions
Test Plans

Test Plan Board
Integrations

Automation & Continuous Integration
REST API

Reporting
JQL
Xray calculated custom fields
Reports and Gadgets
Dashboards
Custom Reports

Administration and Customization
Settings
Your own custom fields
Workflows on Xray entities
Reindex

Other operations
Data Center Tips
References

Overview
This document provides useful tips to improve the performance of your Jira instance while using Xray; tips cover normal usage, configuration and setup. It
assumes that you have some Jira and Xray background.

As Xray is built on top of Jira, the first thing you need to make sure is that your Jira instance is properly configured and tuned beforehand. Thus, we
recommend looking at this section first.Jira specifics

After ensuring your Jira instance is fine-tuned, then you may proceed to as they apply both to Server and Data Center based deployments. Common Tips
At the end of the document, you have some specific that complement the previous section.Data Center Tips

Background
Xray mainly uses Jira issue types for implementing Test Management related entities, such as:

Test - for specification;
Pre-Condition - for complementing the specification of one or more test cases;
Test Set - for organizing Tests in lists;
Test Execution - for scheduling executions of tests;
Test Plan - for defining the test plan against some scope (e.g. version/sprint) and track its progress.

The only relevant exception to use issue types is Test Runs. A Test Run is an internal entity managed by Xray itself, which is an instance of a Test
containing also its result related data.

Every time a Test is executed within some Test Execution context, a Test Run is created containing a copy of the test specification along with the recorded
results.

Please note

The number of projects or amount of issues in Jira by themselves may not affect at all Xray's performance. From Xray's perspective,
performance will depend on usage patterns in terms of testing, including the amount of Test Runs and on-demand reporting.

1.
a.
b.

2.
3.

1.

2.

3.

One of the key features of Xray is its coverage analysis capability, which is something quite powerful that most tools are unable to provide. In brief words,
Xray provides the ability for you to evaluate in real-time how a given Test or a given "requirement" is for a specific context (i.e. version,
version+environment); Xray calculates this based on the latest consolidated results for each context. This means that you may evaluate how a Test or a
requirement is for different versions, for example, because for each case it will only consider the testing results obtained for that version.

Thus, Test Runs are a potential variable affecting performance as they will have to be analyzed and consolidated to compute the coverage status
depending on the context.

Common Tips
This document sums up tips to keep the performance of Xray and JIRA as optimized as possible.

The tips are grouped by area or topic; therefore, they do not follow any specific order. However, you should start by looking at the and Jira specifics Process
related tips first.

Within each area/topic, tips will be presented by descending order of risk; each tip is preceded by an icon that corresponds to the risk level.

Legend:

 - major

 - highest

 - high

 - medium

 - low

 - lowest

Jira specifics

 Xray is built on top of Atlassian's Jira, therefore it is mostly dependant on the architecture and technologies followed by Jira itself.

Atlassian provides some , that this also applies to Xray.performance tips related to scaling

Large organizations or organizations with huge amounts of data and/or many users should consider , which increases performance and Jira Data Center
improves throughout higher concurrency usage scenarios; it also provides high-availability for critical scenarios.

There are some general Jira administration related tips that you may want to consider; , so please consider these just as a starting point:there are many

Moderate the usage of custom fields
;Managing custom fields in JIRA effectively

;Optimizing custom fields
Moderate workflow usage, in terms of their complexity (i.e. the number of workflow steps);
Evaluate the plugins/apps you need as some may impact performance.

Process

 "Unified" development process: define a process that can be applied to all teams in a way to manage the STLC. Every team is different and
has its own needs, therefore your process should not be too strict but it should provide some guidance on how development life cycle should be
addressed, covering requirement management, bug management and test management. Having teams working completely in different ways
hardens communication and leads to unproper and unoptimized tool usage. If you have a well-defined process that can be used organization-
wide, this is better, because this is the key to ensure optimal usage and best performance.

 Are you adopting Agile and Scrum? Check out for tips on how you can take advantage of Xray in such Using Xray in an Agile context
scenarios; the page provides high-level overview of Agile and Agile Testing and besides background information on Agile software development
them, it will also provide some useful tips so your team can be more Agile and avoid doing things that are unnecessary.

 Each Xray entity has a purpose/fit that you should try to take advantage of. You're not obliged to use all of them; you can even choose to use
some over other ones. In order to have an optimum usage of Xray, we would recommend understanding, first of all, the purpose of each entity.

Status for Tests and "requirements" is shown in several places, namely in reports such as Traceability and Overall Coverage (more info ahead
on where and how to perform).Coverage Analysis

If you want a more and in-depth explanation of how coverage works, please see Understanding coverage and the calculation of Test and
.requirement statuses

https://confluence.atlassian.com/enterprise/scaling-jira-867028644.html
https://confluence.atlassian.com/enterprise/jira-data-center-472219731.html
https://confluence.atlassian.com/adminjiraserver/optimizing-custom-fields-956713279.html
https://confluence.atlassian.com/adminjiraserver/optimizing-custom-fields-956713279.html
https://docs.getxray.app/display/XRAY35/Using+Xray+in+an+Agile+context
https://docs.getxray.app/display/XRAY35/Agile+software+development
https://docs.getxray.app/display/XRAY35/Coverage+Analysis
https://docs.getxray.app/display/XRAY35/Understanding+coverage+and+the+calculation+of+Test+and+requirement+statuses
https://docs.getxray.app/display/XRAY35/Understanding+coverage+and+the+calculation+of+Test+and+requirement+statuses

3.

1.
a.

2.
a.

1.

1.

2.

1.

Entity / Issue
Type

Purpose

Test For making the specification of some test; a test case template.

Pre-Condition For abstracting some initial condition that one or more tests must assure; reusable, i.e. linked to one or more test cases.

Test Set For creating lists of test cases, so you can easily pick those test cases afterwards in case you need them.

Test
Execution

For scheduling an execution of a bunch of test cases in some version&revision of the SUT.

A Test Execution contains several Test Runs, one per each ”linked” test case.

Sub Test
Execution

Similar to a Test Execution; the difference between them is that the Sub-Test Execution is a sub-task and can be created
within the context of a requirement.

Creating a Test Execution as a sub-task of the requirement issue provides you with the ability to track executions in the Agile
board.

Test Plan For grouping multiple Test Executions and presenting a consolidated overview of them; tracks the results of some Tests in
some version/sprint of the SUT.

Test Run An instance of a Test in the context of some Test Execution; contains a copy of the original Test specification along with the
recorded results. .It’s not an issue type

Test
Repository

A per project hierarchical organization of Test cases using folders; an approach to Test Sets for organizing test alternate
cases.

Test Plan
Board

A per Test Plan hierarchical organization of Test cases, at the planning phase, using folders.

It is used for...

grouping, organizing the tests in the context of the Test Plan and to easily track the results of certain Tests grouped in
some folder;
easily changing the ranking of the Tests, to create Test Executions for them afterwards.

Specification

 Avoid having many sub-requirements per requirement (e.g. Stories per Epic) as it can impact the calculation of their statuses(>500)
normally it is a signal that the requirement needs to be further decomposed. Besides hardening analysis and its management, it will also
require additional resources during computation of its status upon changes in any of the related sub-requirements, that in turn are
affected by the status of the related Tests.

 Requirements being covered by many Tests(>>100)
normally it is a signal that the requirement needs to be further decomposed. Besides hardening analysis and its management, it will also
require additional resources during computation of its status, that in turn is affected by the status of the related Tests.

Organizing

 If you have thousands of Tests, using the Test Repository approach may provide over using "lists" (i.e. Test Set issues), as additional benefits
it makes management of test cases easier while avoiding the creation of issues.

Planning

 Instead of creating one Test Plan for your release, you may create multiple Test Plans to track different Tests (e.g. manual vs automated or
regression vs NRT); this may be useful if you want to have clear visibility of how certain groups of Tests are progressing and if their execution life
cycle is different from other ones. It will also make your Test Plans considerably lighter.

 If adopting Scrum, create Test Plans per Sprint, to track the testing being done in the scope of your Sprint; manage them as artefacts of your
Sprint and add them to your Scrum boards so everyone sees their progress. Per each Sprint you may have more than one Test Plan; check out
some possible usage patterns . here

Execution

 Don't create dozens or hundreds of Test Environments; don't try to do data-driven testing using test environments
It will impact the calculations that need to be done and the size of the Lucene index.
Test Environments should be used as a means to identify different testing stages, different browser vendors, different mobile devices;
the number of environments should be well-defined and limited.

Entities

Tests

https://docs.getxray.app/display/XRAY35/Overview+of+the+Test+Repository#OverviewoftheTestRepository-TestRepositoryversusTestSets
https://docs.getxray.app/display/XRAY35/Using+Xray+in+an+Agile+context#UsingXrayinanAgilecontext-DefiningthescopeofyourtestingusingTestPlans

1.

2.

3.

1.

1.

1.

2.

1.

a.

b.

2.

1.

a.
b.

1.

2.

1.

2.

a.

 Don't add many custom fields to Tests, especially if they're calculated, as it will add some additional overhead to Jira.

 We recommend 5 linked requirements per each Test; ideally, a Test should be focused on the validation of requirement. up to one
This recommendation helps improve performance both on the TestRunStatus and Requirement Status calculations and also when
loading the issue screens and reports.

 Promote reusability and avoid cloning Test cases, if they’re the same. A Test can be reused multiple times and can be used to cover more
than one requirement (if really needed), no matter in which project it is located.

Pre-Conditions

 Although the impact is neglectable, try to use Pre-Conditions as a means to have initial conditions that you can link manageable end reusable
to multiple Tests. This will avoid creating additional steps in all those test cases.

Test Sets

 Although there isn’t a hard limit, we recommend having no more than Tests in a given Test Set mostly to ease their management. This 5000
limit may be easily superseded depending on Jira instance deployment configuration.

Test Repository

 Creating a Test Plan from within some Test Repository folder that has many Tests and sub-folders can take some time if you choose to
replicate the folder structure into the destination Test Plan Board. However, this overhead is just temporary.

 Avoid many folders shown at the same time as it will impact browser performance at some time. You can do this by limiting the direct child
folders you create at a given parent folder and by using the "Expand all" moderately. The amount of folders you have does not affect your Jira
backend performance.

Test Executions

 Clean-up old, unneeded executions related data, to make calculations faster throughout the application and thus make reports and some
panels, for example, also faster.

If your organization performs a high number of Test Executions (consequently creating also a high number of Test Runs) we recommend
deleting old Test Executions issues from time to time. This recommendation applies to organizations that import many automated
executions daily using the REST API.

The clean-up process must be scheduled for a low Jira usage period because when Test Executions are deleted, Xray will re-calculate
TestRunStatus and Requirement Status. This might temporarily slow down the Jira instance depending on the number of issues affected.
Deleting Test Runs can affect the calculated and consolidated status of your Tests and of your requirements for all scopes (e.g. versions
or Test Plans + Test Environments); please proceed carefully.

 Although there isn’t a hard limit, we recommend having no more than Tests in a given Test Execution mostly to ease their management. 2000
This limit may be easily superseded depending on Jira instance deployment configuration.

Test Plans

 Xray provides a "Max number of Tests per Test Plan") where you may define a soft limit for the number of Tests within Test Plans. setting (
Although you may adjust this value, we recommend having no more than Tests in a given Test Plan:2000

to ease their management;
and to make it more performant and lighter.

This limit may be easily superseded depending on Jira instance deployment configuration.
Note that a Test Plan aggregates and consolidates the results of the related Test Executions and Tests, thus the overall number of Test Runs
you'll have can add some overhead to the calculation of the consolidated results.

Test Plan Board

 Avoid many folders shown at the same time as it will impact browser performance at some time. You can do this by limiting the direct child
folders you create at a given parent folder and by using the "Expand all" moderately. The amount of folders you have does not affect your Jira
backend performance though.

 Using the Test Plan Board as a means to do operations over certain Tests of the Test Plan (e.g. schedule Test Executions for them) and to
track results can be more efficient than using the Test Plan issue screen. Although the previous two are not equivalent, the Board essentially
provides the same operations while being lighter as it does not show all the information you can see in the Test Plan issue screen.

Integrations

Automation & Continuous Integration

 Upload only relevant test results (e.g. don’t upload unit test results); choose properly what testing results you want to track within Xray.

 Choose properly the upload frequency

https://confluence.xpand-it.com/display/XRAY/Miscellaneous#Miscellaneous-TestsperTestPlan

2.

a.

3.

1.

2.
a.

i.
b.

i.

3.

4.

1.
a.

i.
1.

2.

a.

b.

c.

Aggregate relevant results in some job run periodically (e.g. hourly, daily) and submit those.

 Don’t mix the CI tool with TM tool
Leave the highly detailed execution info on the CI tool.

REST API

 as it controls the pagination on the REST API callsReview the "Max results per request" setting in the Miscellaneous administration settings .
The default value should be ok.

 Limit API calls (to Jira and Xray related endpoints) using a reverse proxy
Evaluate what REST API calls are being used, discuss their real need with users

Make sure that pagination is being used on the REST API calls
Restrict access to REST API calls

Limit access to well-known hosts/applications

 (i.e.) allows you to include custom fields from the Test issues in the response, using Export results endpoint /rest/raven/1.0/testruns includeT
 parameters; please choose carefully what fields you choose to include, as some of these may be calculated and thus add some estFields

additional overhead to the request.

 Whenever searching for issues using (i.e.), please choose explicitly what fields to return using the Jira's REST API api/2/search fields
parameter; that will avoid including unnecessary fields (e.g. "Requirement Status, Test Count, Test Set Status, Test Execution Defects, Test Plan
Status) . This can be aggravated if this endpoint is used automatically by some that are included by default and that add overhead to the request
integration with an external application. This is relevant for "requirement" like issues, Tests, Test Sets, Test Executions and Test Plans.

Reporting

JQL

Xray provides but you have to use them carefully to make sure your instance is not affected. Please do train your users on JQL dozens of JQL functions
before "allowing" to use them throughout Jira.

 Using unoptimized JQL queries can degrade performance substantially
most times this happens because users don't understand how JQL works first of all; JQL is not like SQL (see Understanding JQL

). Thus, filtering issues by project by adding the clause is not the same as specifying the project as Performance "project = <xxx>"
argument to the subsequent JQL function.

Example:
Use

issue in requirements('OK','CALC')

...instead of ...

project = 'CALC' and issue in requirements('OK')

 Some JQL functions, such as the ones dealing with requirement coverage, may be more intensive than other ones, since Xray may have to,
for example, load all the related Test Runs in order to obtain relevant data. Some care should be taken with the following JQL functions:

testPlanTests() - whenever by tests in a given status; the current workaround is to search using the "TestRunStatus" custom field.

requirements() - whenever filtering by dates, as shown in the following example:

 requirements('OK',

 'Calculator',

 'v1.0',

 'chrome'

 'false'

 '2014-08-30')

testExecutionTests() - it will depend on the amount of Tests you have on the Test Execution

Please note

When searching for Tests with a certain status inside a Test Plan, we recommend you to use the custom field search instead.

Xray has created a new way of searching with big improvements when filtering by test status, using the Custom Fields:
(3)
issuetype = Test and TestRunStatus = "DEMO-10 - TODO"
(4)
issuetype = Test and TestRunStatus = "DEMO-10 - TODO environment:IOS"

https://confluence.xpand-it.com/display/XRAY/Miscellaneous#Miscellaneous-XrayRESTAPI
https://docs.getxray.app/display/XRAY35/Export+Execution+Results+-+REST
https://docs.atlassian.com/software/jira/docs/api/REST/8.2.1/
https://docs.getxray.app/display/XRAY35/Enhanced+querying+with+JQL
https://confluence.atlassian.com/jirakb/understanding-jql-performance-740263450.html
https://confluence.atlassian.com/jirakb/understanding-jql-performance-740263450.html

1.

a.

1.

2.

1.

2.

3.

4.

1.

2.

1.

2.

1.

2.

1.

Xray calculated custom fields

 Xray provides some that calculate their values on the fly. This means that you should have that in mind, especially if specific custom fields
you're including them in tables/issue listings/gadgets.

The most intensive custom field is the " " The " " as it does an aggregation, is also intensive if you use it for Test Set Status. Test Count,
multiple issues.

Reports and Gadgets

 One way of doing reporting is by using gadgets. Gadgets are great to share information between team members and even between different
teams; however, if not used carefully, they can degrade Jira performance if all users have the same report on their dashboard as they will
probably generate multiple requests once users access the dashboard. Thus, carefully use the most intensive gadgets such as the "Historical
Daily Requirement Coverage" and the "Tests Evolution" gadget and others that do aggregations (e.g. "Test Runs Summary" gadget). Gadgets
that just "list" entities should not affect performance significantly.

 Limit the target issues for the reports/gadgets, i.e. generate the Overall Requirement Coverage (report/gadget) just for issues that you really
need and not all Jira requirements or projects; the setting " " (available under Max number of requirements per report or gadget results Miscella

) acts as a maximum limit for reports/gadgets.neous some

Dashboards

 Choose properly the filters you use for each gadget, in order to restrict the number of issues that will be processed

 Don't use small (i.e. intensive) refresh times as they will add some overhead to the Jira instance

 Use shareable dashboards to have a high-level overview and the things that matter but avoid creating highly complex dashboards

 Try to normalize the dashboards and make them standard organization-wide; it will facilitate communication and avoid “wrong”/unoptimized
usage

Custom Reports

 If possible, use eazyBI for making custom table/chart-based reports with drill-down capabilities; it is highly flexible and works in its own
database, thus not impacting Jira unless the database is hosted in the same instance of Jira server/database

 If using the Xporter app to build custom PDF, Word or Excel based reports, then please see . Xporter specific recommendations

Administration and Customization

Settings

Xray comes with default settings that are ok for most organizations. Nevertheless, have a look at the different settings; it’s an opportunity to know the
product better and for you to think about ways to fine tune it later.

 Review the settings " ", " ", "Max Test Runs for bulk operations Max number of requirements per report or gadget results Max number of
", " " in the . The default values should be ok.Tests per Test Plan Max results per request Miscellaneous administration settings

 Using the requirement coverage strategy "Use versioned Test Sets for Requirement Coverage" will require additional computational
resources on daily usage; therefore, the default "Use versioned Test Executions for Requirement Coverage" strategy is the recommended one.
Learn more in . If you change this setting, then it can take a while until all statuses are re-calculated depending on your Requirements Coverage
instance dimension.

Your own custom fields

 Beware with calculated custom fields implemented using some customization app (e.g. Jira Misc Custom Fields, ScriptRunner, etc) as they
will be calculated each time they're accessed and they can impact things such as:

indexing time;
REST API calls (e.g. whenever searching issues);
on listings (e.g. on Issues search page, Filters Results gadget, Xray tabular sections) if they're included as columns.

 Adding a lot of custom fields on Jira will add some overhead on performance; therefore, Atlassian itself a responsible usage of recommends
custom fields. Please see more on Optimizing custom fields.

Workflows on Xray entities

 Don't use complex workflows for Xray entities as it will harden their usage; if the workflows have many steps then it will impact overall Jira
performance.

https://confluence.xpand-it.com/display/XRAY/Using+custom+fields
https://docs.getxray.app/display/XRAY35/Miscellaneous
https://docs.getxray.app/display/XRAY35/Miscellaneous
https://confluence.xpand-it.com/display/public/XPORTER/TTT%3A+Recommendations
https://confluence.xpand-it.com/display/XRAY/Miscellaneous#Miscellaneous-BulkOperations
https://docs.getxray.app/display/XRAY35/Requirements+Coverage
https://confluence.atlassian.com/enterprise/managing-custom-fields-in-jira-effectively-945523781.html
https://confluence.atlassian.com/adminjiraserver/optimizing-custom-fields-956713279.html

1.

a.
i.

1.

1.

2.
3.

a.

Reindex

 Xray provides some maintenance operations that can be used under certain circumstances if needed. If you clear some Xray calculated
custom fields, either using option in administration settings or using the available bulk Integrity Checker > Calculated Custom Field Values
operations for Requirement Status and custom fields, it will impact the reindex time considerably as the values have to be all TestRunStatus
recalculated.

Example:
GET http://jiraserver/rest/api/2/search?jql=key=CALC-3214&fields=key,summary,description,fixVersions

Other operations

 Avoid bulk cloning Test plans or Test Executions using some specific apps for that purpose; cloning multiple issues at the same time can add
some overhead to Jira as these can affect the calculations of the statuses of Tests and requirements.

Data Center Tips

 Review and the article. Atlassian's best practices for Data Center Node sizing overview for Atlassian Data Center

 Configure your load balancer properly to use dedicated nodes for REST API calls, which can reduce the impact on other application nodes.
Integration with other apps

 Please s .ee eazyBI's Data Center related recommendations here

References
Jira in general

Managing custom fields in JIRA effectively
Optimizing custom fields
Understanding JQL Performance

Data Center
Best practices for Atlassian Data Center
Node sizing overview for Atlassian Data Center
Traffic distribution with Atlassian Data Center
Jira Data Center size profiles

Other
Knowledge is Power: Visualizing JIRA's Performance Data

https://docs.getxray.app/display/XRAY35/Integrity+Checker#IntegrityChecker-CalculatedCustomFieldValues
https://confluence.atlassian.com/enterprise/best-practices-for-atlassian-data-center-892801350.html
https://confluence.atlassian.com/enterprise/node-sizing-overview-for-atlassian-data-center-941612709.html
https://docs.eazybi.com/eazybijira/set-up-and-administer/set-up-and-administer-for-jira-server/data-center
https://confluence.atlassian.com/enterprise/managing-custom-fields-in-jira-effectively-945523781.html
https://confluence.atlassian.com/adminjiraserver/optimizing-custom-fields-956713279.html
https://confluence.atlassian.com/jirakb/understanding-jql-performance-740263450.html
https://confluence.atlassian.com/enterprise/best-practices-for-atlassian-data-center-892801350.html
https://confluence.atlassian.com/enterprise/node-sizing-overview-for-atlassian-data-center-941612709.html
https://confluence.atlassian.com/enterprise/traffic-distribution-with-atlassian-data-center-895912660.html
https://confluence.atlassian.com/enterprise/jira-data-center-size-profiles-955171062.html
https://www.atlassian.com/company/events/summit-us/watch-sessions/2015/videos/scale/jira-performance-data

	Usage tips to improve performance

