
Testing using Cypress in JavaScript
Overview
In this tutorial, we will create some tests in JavaScript using Cypress.

Cypress is an automation framework focused on building and running browser enabled tests, either for unit, integration or E2E testing.

Of the many , the ability to run tests faster by running them directly in the browser, instead of sending commands to the features provided by Cypress
browser through the network, is one of its strongest points.

Requirements
nodejs
"cypress", "mocha", "mocha-junit-reporter" node modules

Description
This example is mostly taken from the sample tutorial in Cypress documentation page.

You can use different reporters along with Cypress, including mochawesome; you may also use multiple reporters at the same time, in case you need to
generate JSON, HTML reports, for example, simultaneously.

In this case we'll configure Cypress to use the "junit" reporter, which in turn seems to be using "mocha-junit-reporter" node module.

First, we need to configure our project properly, by defining the content.package.json

package.json

{
 "name": "cypress_tutorial",
 "version": "1.0.0",
 "description": "cypress tutorial",
 "main": "index.js",
 "scripts": {
 "test": "./node_modules/cypress/bin/cypress run -s cypress/integration/sample_spec.js --reporter junit",
 "cypress:open": "cypress open"
 },
 "author": "",
 "license": "ISC",
 "devDependencies": {
 "cypress": "^3.2.0",
 "mocha": "^5.2.0",
 "mochawesome": "^3.1.1",
 "mochawesome-merge": "^1.0.7",
 "mochawesome-report-generator": "^3.1.5"
 }
}

Cypress must be configured to use the "junit" reporter. This can be configured in file, along with any other options related with the "cypress.json mocha-
" node module.junit-formatter

cypress.json

{
 "reporter": "junit",
 "reporterOptions": {
 "mochaFile": "results/test-results.xml",
 "testCaseSwitchClassnameAndName": false
 }
}

https://www.cypress.io/features/
https://docs.cypress.io/guides/getting-started/writing-your-first-test.html#Add-a-test-file
https://github.com/michaelleeallen/mocha-junit-reporter
https://github.com/michaelleeallen/mocha-junit-reporter

We then create two tests: a dummy one with an assertion and another one, a bit more complete, that visits a web page and performs some checks against
it.

The final check has a bug on its specification, on purpose, just to make the test fail.

cypress/integration/sample_spec.js

describe('My First Test', function() {
 it('Does not do much!', function() {
 expect(true).to.equal(true)
 })
})

describe('My second test', function() {
 it('Gets, types and asserts', function() {
 cy.visit('https://example.cypress.io')

 cy.contains('type').click()

 // Should be on a new URL which includes '/commands/actions'
 cy.url().should('include', '/commands/actions')

 // Get an input, type into it and verify that the value has been updated
 cy.get('.action-email')
 .type('fake@email.com')
 .should('have.value', 'fake@email.comx') // error added on the test itself just to make it fail
 })
})

In order to run the tests, we need to execute the following command (or invoke "cypress" directly).

npm test
./node_modules/cypress/bin/cypress run -s cypress/integration/sample_spec.js --reporter junit

After running the tests and generating the JUnit XML reports (e.g.), they can be imported to Xray (either by the REST API, or by one of the test-results.xml
 or through the action within the Test Execution).CI plugins Xray has Import Execution Results

curl -H "Content-Type: multipart/form-data" -u admin:admin -F "file=@results/test-results.xml" http://jiraserver
/rest/raven/1.0/import/execution/junit?projectKey=CALC

https://docs.getxray.app/download/attachments/46867060/test-results.xml?version=3&modificationDate=1579268538176&api=v2
https://docs.getxray.app/pages/viewpage.action?pageId=46866350

Each test is mapped to a Generic Test in Jira, and the field contains the value of the "it" concatenated with the "describe" element Generic Test Definition
along with the "it" element again. It is possible to configure the behaviour of "mocha-junit-reporter" to behave differentely; for example, setting
"testCaseSwitchClassnameAndName" to true on configuration file, will generate a slight different XML report with different and cypress.json name clas

 attributes on the element. Please see for more info on the mapping done based on JUnit XML sname testcase Taking advantage of JUnit XML reports
report.

The Execution Details of the Generic Test contains information about the Test Suite, which in this case corresponds to the concatenation of the test's
"describe".

References
https://www.cypress.io/
https://docs.cypress.io/guides/getting-started/installing-cypress.html#System-requirements

https://docs.getxray.app/display/XRAY35/Taking+advantage+of+JUnit+XML+reports
https://www.cypress.io/
https://docs.cypress.io/guides/getting-started/installing-cypress.html#System-requirements

https://github.com/michaelleeallen/mocha-junit-reporter

https://github.com/michaelleeallen/mocha-junit-reporter

	Testing using Cypress in JavaScript

