
Enhanced querying with JQL

JQL Functions
Custom Fields

JQL Functions

The following JQL functions are available for querying Xray issues in the Issue Search Page. They enable you to query the relationships between Xray
issue types.

JQL
Function

Parameters Description Example

testTestSet P1 - Test Issue Key Returns a list of Test Set issues associated with the input Test
issue key.

issuetype = 'Test Set'

 and key in testTestSet('DEMO-1')

testSetTests P1 - Test Set Issue
Key/Filter of Test Sets

Returns a list of Test issues associated with the input Test Set
issue key.

(1)

issuetype = 'Test' and key in testSetTests
('DEMO-5')

(2)

issuetype = 'Test'

 and key in testSetTests('Test sets saved
filter')

testsWithN
oTestSet

None Returns a list of Test issues not associated with a Test Set. key in testsWithNoTestSet()

testPreCon
ditions

P1 - Test Issue Key Returns the Pre-Condition issues associated with the input
Test issue key.

issuetype = 'Pre-Condition'

 and key in testPreConditions('DEMO-1')

preConditi
onTests

P1 - Pre-Condition
Issue Key

Returns the Test issues associated with the input Pre-
Condition issue key.

issuetype = 'Test'

 and key in preConditionTests('DEMO-1')

testRequire
ments

P1 - Test Issue Key
/Filter name of Tests

Returns a list of Requirement issues associated with the input
Test issue key/Filter of tests.

(1)
issuetype = 'Feature'

 and key in testRequirements('DEMO-1')

(2)

issuetype = 'Feature'

 and key in testRequirements('Tests saved
filter')

requiremen
tTests

P1 - Requirement
Issue Key/Filter of
Requirement Issues

Returns a list of Test issues associated with the input
Requirement issue key or saved filter with Requirements.

(1)

issuetype = 'Test'

 and key in requirementTests('DEMO-10')

(2)

issuetype = 'Test'

 and key in requirementTests('Requirements
saved filter')

testsWithR
eqVersion

P1 - Project Name/Key
/Id

P2 - Fix Version

P3 - Fix Version
(Optional)

...

Pn - Fix Version
(Optional)

Returns a list of Test issues associated with the Requirement
issues of the input Fix Versions of the specified project.

issuetype = 'Test'

 and issue in

 testsWithReqVersion('DEMO',

 'v1.0', 'v1.1')

testsWithT
estSetVersi
on

P1 - Project Name/Key
/Id

P2 - Fix Version

P3 - Fix Version
(Optional)

...

Pn - Fix Version
(Optional)

Returns a List of Test issues associated with the Test Set
issues of the input Fix Versions of the specified project.

issuetype = 'Test'

 and issue in

 testsWithTestSetVersion('DEMO',

 'v1.0', 'v1.1')

testExecuti
onTests

P1 - Test Execution
Issue Key/Id or Filter
ID

P2 - Test Run Status
list separated by "|"
(pipe) (Optional)

P3 - User assigned to
execute Test Run
(Optional). If you pass
"" as argument then
the function will look
for Test unassigned
Runs

P4 - Defects Flag with
value in true or false
(optional).

P5 - User who
executed the Test Run
(optional).

Returns a List of Test issues associated with the input Test
Execution issues from optionally filtered by the current test P1
run status for each Test issue.

Parameter can either be a single Test Execution issue key, P1
an ID or a saved filter containing multiple Test Execution
issues.

Possible Test Run Status values are: PASS, FAIL,
EXECUTING, ABORTED, TODO and all custom statuses.

P3 corresponds to the user assigned to execute the Test Run,
while P5 corresponds to the one who actually executed it.

If you pass true as the value for P4, the query returns all Tests
from a particular set of Test Executions where no Defects were
created.

(1)

issuetype = 'Test'

 and issue in testExecutionTests('DEMO-9')

(2)

issuetype = 'Test'

 and issue in testExecutionTests('DEMO-9',

 'PASS')

(3)

issuetype = 'Test'

 and issue in testExecutionTests('DEMO-9',

 'PASS',

 'user A')

(4)

issuetype = 'Test'

 and issue in testExecutionTests(

 'Saved Test Execution
Filter',

 'PASS')

(5)

issuetype = 'Test'

 and issue in testExecutionTests(

 'Saved Test Execution
Filter',

 '',

 'user A')

(6)

issue in testExecutionTests(

 'Saved Test Execution
Filter',

 '',

 'user A', 'true')

(7)

issue in testExecutionTests(

 'Saved Test Execution
Filter',

 '','', 'false', 'admin')

testsWitho
utTestExec
ution

None Returns a list of Tests that are not associated with a Test
Execution to be executed

(1)

issuetype = Test and issue in
testsWithoutTestExecution()

requiremen
ts

P1 - Status list
separated by "|"(pipe)

P2 - Project (Optional)

P3 - Version to
calculate requirement
status (Optional)

P4 - Test Environment
(Optional)

P5 - Flat (Optional)

P6 - ToDate (Optional)

P7 - Saved Filter
(Optional)

Returns a list of Requirement Issues with the provided
coverage status.

Please provide parameter (P2) to restrict the Project
requirements to the specified project.

If analyzing on a specific version, then the Project and Version
parameters must be filled.

Optional filters include:

Test Environment, for taking into account the Test Executions
made for that environment. For analyzing the joint values of all
environments, "" should be used. For taking into account the
Test Executions without any Test Environment assigned, then
"__NULL__" should be used.

Flat that indicates whether all Requirements (not only parents)
should be searched. If "Flat" is not provided, the default value
is 'false'.

ToDate considers only those requirements executions before a
specific date/time (the date literal must follow the ISO8601
format).

Saved Filters considers only requirements from that specific
filter.

(1)

issue in requirements('OK','Calculator')

(2)

priority = Major and fixVersion <= 'v3.0' and

 issue in requirements('NOK', 'Calculator',
'V4.0')

(3)

issue in

 requirements('NOK', '', '', '', '','2014-01-
01')

(4)

issue in

 requirements('OK',

 'Calculator',

 'v1.0',

 'chrome'

 'false'

 '2014-08-30')

(5)

issue in

 requirements('NOK',

 'Calculator',

 'v2.0',
 '',

 'true')

(6)
issue in
 requirements('NOK',
 'Calculator',
 'v2.0',
 'chrome',
 'false',
 ' ',
 'Requirements saved filter')

Please note

Although optional, it is highly recommended to
specify the parameter as means to define Project
the project having the requirments and thus reduce
the amount of issues that will be processed
/returned. Otherwise, requirements from JIRA all
projects will be processed, which possibly is
something that you don't want or need at all.

requiremen
tsWithStat
usByTestPl
an

P1 - Status list
separated by "|"(pipe)

P2 - Test Plan Issue
Key

P3 - Test Environment
(Optional)

P4 - Flat (Optional)

P5 - ToDate (Optional)

P6 - Project (Optional)

P7 - Saved Filter
(Optional)

Returns a list of Requirement Issues with the coverage status
calculated for the given Test Plan issue.

Optional filters include:

Test Environment, for taking into account the Test Executions
made for that environment. For analyzing the joint values of all
environments, "" should be used. For taking into account the
Test Executions without any Test Environment assigned, then
"__NULL__" should be used.

Flat that indicates whether all Requirements (not only parents)
should be searched. If "Flat" is not provided, the default value
is 'false'.

ToDate considers only those requirements executions before a
specific date/time (the date literal must follow the ISO8601
format).

Project and considers only requirements from Saved Filters
that specific project or filter.

(1)

issue in

 requirementsWithStatusByTestPlan('OK', 'TP-
123')

(2)

issue in

 requirementsWithStatusByTestPlan('NOK',

 'TP-123',

 '',

 'true')

(3)

issue in

 requirementsWithStatusByTestPlan('NOK',

 'TP-123',

 'Android',

 'false',

 '2014-01-
01')

(4)
issue in
 requirementsWithStatusByTestPlan('NOK',
 'TP-123',
 'Android',
 'false',
 ' ',

'Calculator',

'Requirements saved filter')

defectsCre
atedDuring
Testing

P1 - Test Issue Key
/Filter of Test Issues

Return a list of defects created during the execution of the
specified Tests.

(1)

issue in defectsCreatedDuringTesting()

(2)

issue in defectsCreatedDuringTesting("TEST-
123")

(3)

issue in defectsCreatedDuringTesting
("saved_filter")

defectsCre
atedDuring
TestExecut
ion

P1 - Test Execution
issue Key or Test
Execution based Filter

P2 - List of users
separated by "|"
(pipe). (Optional)

Returns a list of Defects created during the execution of the
specified Test Executions; can optionally be filtered by the
Defect Issue Assignee username.

(1) issue in

 defectsCreatedDuringTestExecution(TEST-123)

(2) issue in

 defectsCreatedDuringTestExecution
(saved_filter)

(3) issue in

 defectsCreatedDuringTestExecution
(saved_filter, 'user1|user2')

(4) issue in

 defectsCreatedDuringTestExecution(TEST-123,
'user1|user2')

defectsCre
atedForRe
quirement

P1 - Requirement key
or saved filter

Returns a list of defects created during the execution of Tests
covering the specified requirements.

(1)

issue in defectsCreatedForRequirement("REQ-
123")

(2)

issue in defectsCreatedForRequirement
("saved_filter")

manualTes
tsWithoutS
teps

None Returns a list of manual tests that have no test steps. issue in manualTestsWithoutSteps()

testTestEx
ecutions

P1 - Test Issue Key/Id
or Filter Name/Id

P2 - Test Run Status
list separated by "|"

 (pipe) (Optional)

Returns a list of test executions associated with the input Test
Issues from optionally filtered by the current Test status in P1
each Test Execution issue.

Parameter can either be a single Test issue key or Id or a P1
saved filter name or id containing multiple Test issues.

Possible Test Run Status values are: PASS, FAIL,
EXECUTING, ABORTED, TODO and all custom statuses.

(1)

issuetype = 'Test Execution'

 and issue in testTestExecutions('DEMO-9')

(2)

issuetype = 'Test Execution'

 and issue in testTestExecutions('DEMO-9',

 'PASS')

(3)

issuetype = 'Test Execution'

 and issue in testTestExecutions(

 'Saved Test Filter',

 'PASS')

testExecWi
thTestRuns
AssignedT
oUser

P1 - Username
(Optional)

P2 - Status (Optional)
Username is required
in case we use this
parameter

Returns a list of test executions where a user has at least one
test run assigned to him. You can optionally specify a user with
P1, or if the user is omitted the current user will be used. Note
that if you are not logged in to JIRA, a user must be specified.

If you use status parameter then user is required

(1)

issuetype = 'Test Execution' and

 issue in testExecWithTestRunsAssignedToUser()

(2)

issuetype = 'Test Execution' and

 issue in testExecWithTestRunsAssignedToUser
('userDPC')

(3)

issuetype = 'Test Execution' and

 issue in testExecWithTestRunsAssignedToUser
('userDPC', "FAIL")

testSetPa
rtiallyIn

P1 - Test Execution
Issue Key/Test Plan
Issue Key/Id or Filter Id

Return a list of Test Sets that have at least one test in . P1 (1)

issuetype = 'Test Set' and

 issue in testSetPartiallyIn('DEMO-15')

(2)

issuetype = 'Test Set' and

 issue in testSetPartiallyIn('testExecList')

(3)

issuetype = 'Test Set' and

 issue in testSetPartiallyIn('testPlanList')

testSetFu
llyIn

P1 - Test Execution
Issue Key/Test Plan
Issue Key/Id or Filter Id

Return a list of Test Sets that have all its tests in P1. (1)

issuetype = 'Test Set' and

 issue in testSetFullyIn('DEMO-15')

(2)

issuetype = 'Test Set' and

 issue in testSetFullyIn('testExecList')

(3)

issuetype = 'Test Set' and

 issue in testSetFullyIn('testPlanList')

testPlanTe
sts

P1 - Test Plan Key/Filt
er of Test Plans

P2 - Status (Optional)

P3 -
Environment (Optional)

Returns a list of tests that are associated with the test plan.

The "status" parameter is optional and allows to filter Test
issues in a specific Plan with the specified execution status. If
the "status" parameter is present, users might also pass the
"environment" parameter. If this parameter is filled, Xray will
provide all Tests in a Test Plan that are in the specified
"status" and for the specified "environment".

(1)

issue in testPlanTests("DEMO-10")

(2)

issue in testPlanTests("Test Plans saved
filter","TODO")

(3)

issue in testPlanTests("DEMO-10","TODO")

(4)

issue in testPlanTests("DEMO-10","TODO","IOS")

testPlanTe
stExecutio
ns

P1 - Test Plan Key
/Filter of Test Plans

Returns a list of test executions that are associated with a Test
Plan or a saved filter of Test Plans.

(1)

issue in testPlanTestExecutions("DEMO-10")

(2)

issue in testPlanTestExecutions("Test Plans
saved filter")

testPlanRe
quirements

P1 - Test Plan Key/Filt
er of Test Plans

Returns the Requirement issues that are indirectly associated,
through Test issues, with a Test Plan or a saved filter of Test
Plans.

(1)

issue in testPlanRequirements("DEMO-20")

(2)

issue in testPlanRequirements("Test Plans
saved filter")

testTestPlan P1 - Test Issue Key Returns a List of Test Plan issues associated with the input
Test issue key.

issuetype = 'Test Plan'

 and key in testTestPlan('DEMO-1')

testReposit
oryFolderT
ests

P1 - Project Key

P2 - Folder Path

P3 - Flatten (Optional)

Returns the list of Tests contained in a folder (P2) of the Test
Repository of a Project (P1)

May optionally include the Tests in sub-folders by setting
Flatten (P3) to "true".

(1)

issue in testRepositoryFolderTests("CALC", 'Parent/Child')

(2)

issue in testRepositoryFolderTests("CALC", 'Parent/Child',
"true")

testPlanFol
derTests

P1 - Test Plan Key

P2 - Folder Path

P3 - Flatten (Optional)

P4 - Test Run Status
(Optional)

P5 - Test Environment
(Optional)

Returns the list of Tests contained in a folder (P2) of a Test
Plan (P1).

May optionally include the Tests in sub-folders by setting
Flatten (P3) to "true".

Can also filter by Tests Run Status (P4) for a given Test
Environment (P5).

To analyze the joint values of all Test Environments, "" should
be used. To analyze the Test Executions without any Test
Environment assigned, then "__NULL__" should be used.

(1)

issue in testPlanFolderTests(CALC-10, 'Parent/Child')

(2)

issue in testPlanFolderTests(CALC-10, 'Parent/Child', "true")

(3)

issue in testPlanFolderTests(CALC-10, 'Parent/Child', "true",
"TODO|FAIL", "windows")

When searching for Tests with a certain status
inside a Test Plan, we recommend you to use the
custom field search instead.

Xray has created a new way of searching with big
improvements when filtering by test status, using
the Custom Fields:
(3)
issuetype = Test and TestRunStatus = "DEMO-10
- TODO"
(4)
issuetype = Test and TestRunStatus = "DEMO-10
- TODO environment:IOS"

projectPare
ntRequire
ments

P1 - Project Key Returns the list of Requirement issues, from a given Project,
which are not Sub-requirements

(1) issue in projectParentRequirements("CALC")

Custom Fields

Xray also provides custom fields to allow more refined queries when searching for issues.

JQL
Function

Issue
Type

Description Example

Test Type Test The Test type: Manual; Cucumber; Generic issuetype = 'Test'

 and "Test Type" =
"Manual"

TestRunSt
atus

Test This is a calculated custom field that provides the based on the current "Test latest Test Run status
Run Status Version Strategy" option configured in the Xray administration.

Syntax: TestRunStatus = "[] - [] environment:[]Group (or)version TestPlan Status environment "

Only the is mandatory; if only the status is provided, Xray will assume you are searching for the Status
latest execution

Xray will lookup for all Tests with in that particular andStatus version environment.

Read more about and .Status environments

issuetype = 'Test'

 and TestRunStatus in
("FAIL", "ABORTED")

_

issuetype = 'Test'

and TestRunStatus = "PASS"

_

issuetype = 'Test'

 and TestRunStatus =
"TESTPLAN-123 - PASS"

_

issuetype = 'Test'

 and TestRunStatus =
"FAIL environment:Android"

-
issuetype = 'Test'

 and TestRunStatus =
"v3.0 - PASS environment:
Android"

_

issuetype = 'Test'

 and TestRunStatus =
"TESTPLAN-123 - PASS
environment:Android"

_

issuetype = 'Test'

 and TestRunStatus is
EMPTY

Test Run Status

The latest Test Run Status is calculated based on the latest final Test Run (i.e., latest finish
date) or, in case there are no final Test Runs, the latest non-final Test Run (i.e., latest start
date). Please see the .custom fields preferences page

https://docs.getxray.app/display/XRAY360/Understanding+coverage+and+the+calculation+of+Test+and+requirement+statuses
https://docs.getxray.app/display/XRAY360/Working+with+Test+Environments
https://docs.getxray.app/display/XRAY360/Custom+Fields

Requireme
nt Status

Require
ment

This is a calculated custom field that provides the requirement coverage status.

Possible status values are:

OK - All tests passed the requirement

NOK - At least one test failed

NOTRUN - At least one test did not run

UNCOVERED - The requirements is not associated with tests

testTestExecutions

Syntax: "Requirement Status" = "[] - [] environment:[]Group (version or TestPlan) Status environment "

Only the is mandatory; if only the status is provided, Xray will assume you are searching for the Status
latest execution

Xray will lookup for all Requirements with in that particular andStatus version environment.

Read more about and .Status environments

issuetype = 'New Feature'

 and "Requirement
Status" = "OK"

_

issuetype = 'New Feature'

 and "Requirement
Status" in ("NOTRUN",
"UNCOVERED")

_

issuetype = 'New Feature'

and "Requirement Status"
= "v1.0 - OK"
-

issuetype = 'New Feature'

 and "Requirement
Status" = "v1.0 - OK
environment:Android"

Steps
Count

Test The number of Steps in a Manual Test issuetype = 'Test'

 and "Steps Count" = 3

Requirement Coverage

For more information, please check out our page dedicated to .requirements coverage

If the Requirements Coverage Strategy depends on the version, then you must also include
the actual version name and the status when you do the search. The syntax: "[version
name] - [status]"

The and custom fields, mentioned in , are not queryable. Test Set Status Test Plan Status Custom Fields

https://docs.getxray.app/display/XRAY360/Understanding+coverage+and+the+calculation+of+Test+and+requirement+statuses
https://docs.getxray.app/display/XRAY360/Working+with+Test+Environments
https://docs.getxray.app/display/XRAY360/Coverage+Analysis
https://docs.getxray.app/display/XRAY360/Requirements+Coverage
https://docs.getxray.app/display/XRAY360/Custom+Fields

	Enhanced querying with JQL

