Testing mobile apps in the cloud (Sauce Labs) using
Webdriver and Mocha in Javascript

Overview

In this tutorial, we will create a test in Javascript+Mocha in order to validate a simple application interaction using Sauce Labs for cloud mobile testing.

@ Please note

Within this tutorial, only one Test Execution will be used; it will contain one Test Run with all the results for the different used browsers. Thus,
the overall test run status will be affected by the results made for all the browsers.

Instead of this approach, a different one could be creating a Test Execution per each browser; this would require some adaptions in order to
produce a XML report per each used browser. This approach would give the ability to take advantage of Test Environments (more info in Workin
g with Test Environments).

Requirements

® Install NodeJS
® |[nstall all dependencies using "npm"

Description

This tutorial is based on Sauce Labs's own tutorial for NodeJS.

You may start by cloning the repository https://github.com/saucelabs-sample-test-frameworks/JS-Mocha-WebdriverlO-Appium-Android

git clone https://github. com saucel abs-sanpl e-test - franewor ks/ JS- Mocha- Webdri ver | O Appi um Andr oi d

We need to cadd the dependency on wdi o-j uni t - r eport er to generate JUnit XML reports (you have to use it for JUnit, since you cannot rely on
mocha-junit-reporter since it does not handle the events from webdr i veri o library).

package.json

{
"nanme": "nocha-webdriverio",
"version": "0.0.1",
"description": "Parallel tests with Mocha and Webdriverio =============",
“main": ",
"repository": {
“type": "git",
"url": "git@ithub.com saucel abs-sanpl e-test-frameworks/JS-Mocha- Wbdriverl O git"
o
"scripts": {
"test": "./node_nodul es/.bin/wdio wdio.conf.js"
o
"dependenci es": {
"webdriverio": "*",
"parallel-nocha": "*",
"nmocha": "*",
“chai": "*",
"wdi o- nocha- f ranewor k": "~0. 3. 10",
"wdi o- sauce-service": "~0.1"
o
"devDependenci es": {
"bitcoder/wdi o-junit-reporter": "*",

https://github.com/saucelabs-sample-test-frameworks/JS-Mocha-WebdriverIO-Appium-Android
https://github.com/saucelabs-sample-test-frameworks/JS-Mocha-WebdriverIO-Appium-Android
https://docs.getxray.app/display/XRAY360/Working+with+Test+Environments
https://docs.getxray.app/display/XRAY360/Working+with+Test+Environments

@ Please note

The standard "wdio-junit-reporter" npm package can produce one or more JUnit XML reports. We'll generate the multi report file generation
capability.

However, the produced JUnit XML contains testcase elements with a non-suitable classname attribute. Since "wdio-junit-reporter” is unable to
customize this attribute, we need to make a change so it generates a proper attribute value. This is the reason we're using a forked version from
the upstream project.

We need to configure webdriverio with the capabilities (devices/browsers) we want, along with the reporter/JUnit related configurations.

wdio.conf.js

exports.config = {

Il
I
/'l Service Providers
I
/1 Webdriverl O supports Sauce Labs, Browserstack, and Testing Bot (other cloud providers
/1 should work too though). These services define specific user and key (or access key)
/1 values you need to put in here in order to connect to these services.

11

user: process. env. SAUCE_USERNAME,

key: process. env. SAUCE_ACCESS_KEY,

/1

/1

/1 Specify Test Files

/1

/1 Define which test specs should run. The pattern is relative to the directory

/1 fromwhich “wdio” was called. Notice that, if you are calling “wdio” from an

/1 NPM script (see https://docs.npnjs.com cli/run-script) then the current working

/] directory is where your package.json resides, so "wdio” will be called fromthere.

/1

specs: [
'"./tests/*.js

1
/] Patterns to exclude.
exclude: [

/1 ' path/to/excluded/files'

/1 Define your capabilities here. Webdriverl O can run nmultiple capabilities at the sane
/1 time. Depending on the nunber of capabilities, Webdriverl O |aunches several test

/'l sessions. Wthin your capabilities you can overwite the spec and exclude options in
/1 order to group specific specs to a specific capability.

/1 First, you can define how many instances should be started at the sane tine. Let's

/1 say you have 3 different capabilities (Chrome, Firefox, and Safari) and you have

/'l set maxlnstances to 1; wdio will spawn 3 processes. Therefore, if you have 10 spec

/1 files and you set maxlnstances to 10, all spec files will get tested at the same tine
/1 and 30 processes will get spawned. The property handl es how nany capabilities

/1 fromthe sanme test should run tests.

/1

max| nst ances: 40,

/1

/1 1f you have trouble getting all inportant capabilities together, check out the

/| Sauce Labs platformconfigurator - a great tool to configure your capabilities:
/1 https://docs. saucel abs. coniref erence/ pl atf orns- confi gurat or

/1
capabilities: [
/1 maxl nstances can get overwitten per capability. So if you have an in-house Sel enium
/1 grid with only 5 firefox instance available you can nake sure that not nore than
/1 5 instance gets started at a tine.
/ / max| nst ances: 5,
/1

{

br owser Nane: ,

appi unVersion: '1.4.16',

devi ceNane: ' Samsung Gal axy S4 Enul ator',

deviceOrientation: 'portrait',

platfornVersion: '4.4",

pl at f or MNanme: ' Android',

app: ' https://github. conf appi um sanpl e- code/ bl ob/ mast er/ sanpl e- code/ apps/ Api Denps/ bi n/ Api Denps-
debug. apk?raw=t rue',

wai t f or Ti meout: 300,

comandTi meout : 300

oA

br owser Nanme: '',

appi unVersion: '1.4.16',

devi ceNane: ' Android Emul ator',

deviceOrientation: 'portrait',

platfornVersion: '5.1",

pl at f or MNanme: ' Android',

app: ' https://github. conf appi unl sanpl e- code/ bl ob/ mast er/ sanpl e- code/ apps/ Api Denps/ bi n/ Api Denps-
debug. apk?raw=t rue',

wai t f or Ti meout : 300,

comandTi meout : 300

}
I
11
11
/] Test Configurations
/1
/'l Define all options that are relevant for the Webdriverl O instance here
/1
/1 By default Webdriverl O commands are executed in a synchronous way using
/1 the wdi o-sync package. If you still want to run your tests in an async way

/1 e.g. using prom ses you can set the sync option to false.
sync: true,

/1

/1 Level of logging verbosity: silent | verbose | conmand | data | result | error
| ogLevel : "error',

/1

/'l Enables colors for |og output.
col oredLogs: true,

11

/| Saves a screenshot to a given path if a command fails.
screenshot Path: './errorShots/"',

/1

/'l Set a base URL in order to shorten url command calls. |f your url paraneter starts
/1l with "/", then the base url gets prepended.

baseUrl: 'http://saucel abs.github.io',

I

/1 Default timeout for all waitFor* conmands.

wai t f or Ti meout: 10000,

Il

/] Default tinmeout in milliseconds for request

/1 if Selenium Gid doesn't send response

connectionRetryTi neout: 90000,

Il

/1 Default request retries count

connectionRetryCount: 3,

11

/1 Initialize the browser instance with a Wbdriverl O plugin. The object should have the
/1 plugin nane as key and the desired plugin options as properties. Make sure you have
/1 the plugin installed before running any tests. The followi ng plugins are currently
/1 avail abl e:

/1 WebdriverCSS: https://github.com webdriveri o/ webdrivercss

/1 WebdriverRTC: https://github. com webdriveri o/ webdriverrtc

/1
/1
Il
/1
/1
/1
/1
/1
/1
/1
Il
/1
/1
/1
/1
/1

Browserevent: https://github. com webdriveri o/ browserevent
plugi ns: {
webdrivercss: {
screenshot Root: 'ny-shots',
fail edConpari sonsRoot: 'diffs',
m sMat chTol erance: 0. 05,
screenWdt h: [320, 480, 640, 1024]
3
webdriverrtc: {},
browserevent: {}

H

Test runner services

Services take over a specific job you don't want to take care of. They enhance
your test setup with alnost no effort. Unlike plugins, they don't add new
commands. |nstead, they hook thenselves up into the test process.

services: ['sauce'],

/1
Il
/1
/1
Il
/1

Framewor k you want to run your specs with.
The follow ng are supported: Mdcha, Jasnine, and Cucunber
see al so: http://webdriver.io/guide/testrunner/frameworks. htm

Make sure you have the wdi o adapter package for the specific framework installed
before running any tests.

framework: 'nocha',

/1
/1
Il
/1
/1

Test reporter for stdout.

The only one supported by default is 'dot'

see al so: http://webdriver.io/guide/testrunner/reporters. htni
reporters: ['dot'],

reporters: ['dot','junit'],
reporterOptions: {

outputDir: "./",
junit: {
outputDir: "./",
out put Fi | eFormat: {
multi: function (opts) {
return “${opts.capabilities}.xn"

}
}

}
I
/] Options to be passed to Mcha.
/'l See the full list at http://nochajs.org/
/1
nmochaOpts: {

ui: ' bdd'
I
/] =====
/'l Hooks
/] =====
/1 Webdriverl O provi des several hooks you can use to interfere with the test process in order to enhance
// it and to build services around it. You can either apply a single function or an array of
/1l methods to it. If one of themreturns with a pronm se, WebdriverlOw Il wait until that prom se got
/1 resolved to continue.
/1
/] Gets executed once before all workers get |aunched.
/1 onPrepare: function (config, capabilities) {
17},
/1
/'l Gets executed before test execution begins. At this point you can access all gl obal
/'l variables, such as “browser . It is the perfect place to define custom commands.
/1 before: function (capabilities, specs) {
1%,
/1
/1 Hook that gets executed before the suite starts
/| beforeSuite: function (suite) {
1y,
/1
/1 Hook that gets executed _before_ a hook within the suite starts (e.g. runs before calling

/| beforeEach in Mcha)

/1 beforeHook: function () {

I},

/1

/1 Hook that gets executed _after_ a hook within the suite starts (e.g. runs after calling
/1 afterEach in Mcha)

/] afterHook: function () {

I},

/1

/1 Function to be executed before a test (in Mdcha/Jasnine) or a step (in Cucunber) starts.
/1 beforeTest: function (test) {

1y,

/1

/1 Runs before a Webdriverl O command gets execut ed.

/1 beforeCommand: function (commandNane, args) {

I},

/1

/1 Runs after a Webdriverl O command gets executed

/1 afterCommand: function (commandNane, args, result, error) {

1y,

/1

/1 Function to be executed after a test (in Mcha/Jasmne) or a step (in Cucunber) starts.
/lafterTest: function (test) {

11},

/1

/1 Hook that gets executed after the suite has ended

/] afterSuite: function (suite) {

17},

/1

/'l Gets executed after all tests are done. You still have access to all global variables from
Il the test.

/] after: function (result, capabilities, specs) {

1%,

/1

/] Gets executed after all workers got shut down and the process is about to exit. It is not
/| possible to defer the end of the process using a proni se.

/1 onConpl ete: function(exitCode) {

/1 }

The test use the Page Objects pattern, implemented in several classes such as the following one.

pages/home.page.js

T

* Created by titusfortner on 11/23/16.

*/

var Page = require('./page');

var HonePage = Obj ect.create(Page, {
gr aphi csTab: {

get: function () {
return browser. el enent (" ~G aphics™);

}
}
click: {
val ue: function (tabNane) {
if (tabNane === "G aphics") {
t his. graphicsTab. click();
} else {
throwError("Not inplenmented");
}
}
}

1)

nodul e. exports = HonePage;

Test: Verify the existence of a meny entry

tests/menu-test.js

var expect = require('chai').expect;

var HomePage = require('../pages/hone. page'),
MenuPage = require('../pages/ nmenu.page');

descri be(' Mocha Spec Sync exanple', function() {
it("verify Arcs entry in menu", function() {
HonePage. cl i ck(" G aphics");
expect (MenuPage. arcsEntry.isVisible()).to.equal (true);
s
b

Before running the test(s), you need to export some environment variables with your Sauce Lab's username along with the respective access key, which
you can obtain from within the User Settings section in your Sauce Lab's profile page.

export SAUCE_USERNAME=<your Sauce Labs username>
export SAUCE_ACCESS KEY=<your Sauce Labs access key>

Test(s) then can be run in parallel using NPM "test" task.

npm t est

After successfully running the tests and generating the JUnit XML reports (e.g. androidemulator.android.5_1.apidemos-debug_apk?raw=true.xml, samsung
galaxys4emulator.android.4_4.apidemos-debug_apk?raw=true.xml), it can be imported to Xray (either by the REST API or through the Import Execution
Results action within the Test Execution).

We'll use some shell-script sugar to do that for us and at the same time populate the Test Environment field on the Test Execution issues that will be
created.

PRQIECT=CALC

JI RASERVER=ht t ps: //yourjiraserver
USERNAME=user

PASSWORD=pass

FI XVERSI ON=v3. 0

for FILEin “Is *.xnl"; do

TESTENV=$(echo $FILE | cut -d "." -f 1-3)

curl -H "Content-Type: multipart/formdata" -u $USERNAMVE: $PASSWORD - F "fil e=@FI LE* "$JI RASERVER/ rest/raven/ 1.
0/ i mport/ execution/junit?project Key=$PROQIECT&t est Envi r onment s=$TESTENV&S i xVer si on=$FI XVERS| ON'
done

In our case, two Test Executions will be created: one per each mobile device. Each one contains the same Test case.

o= Calculator / CALC-1954
Execution results - samsunggalaxys4emulator.android.4_4.apidemos-debu
[1631153467553]

Edit (J Comment Assign More ~ Close Issue = Reopen Issue Admin ~

Details
Type: 3 Test Execution Status: Y (View Workflow)
Affects Version/s: None Resolution: Fixed
Component/s: None Fix Version/s: v3.0
Labels: hone
Test Environments: samsunggalaxys4emulator.android.4_4
Test Plan: None
e Calculator / CALC-1952
Execution results - androidemulator.android.5_1.apidemos-debug_apk?raw=true
[1531153466457]
Edit (J Comment Assign More ~ Close Issue =~ Reopen Issue Admin ~
Details
Type: 3 Test Execution Status: =R (View Workflow)
Affects Version/s: None Resolution: Fixed
Component/s: None Fix Version/s: v3.0
Labels: None
Test Environments: androidemulator.android.5_1

Test Plan: None

https://docs.getxray.app/download/attachments/46886621/androidemulator.android.5_1.apidemos-debug_apk%3Fraw%3Dtrue.xml?version=2&modificationDate=1592938018194&api=v2
https://docs.getxray.app/download/attachments/46886621/samsunggalaxys4emulator.android.4_4.apidemos-debug_apk%3Fraw%3Dtrue.xml?version=2&modificationDate=1592938018167&api=v2
https://docs.getxray.app/download/attachments/46886621/samsunggalaxys4emulator.android.4_4.apidemos-debug_apk%3Fraw%3Dtrue.xml?version=2&modificationDate=1592938018167&api=v2

Overall Execution Status Dates

Create
1 Update
PASS Resolv
Begin [
TOTAL TESTS: 1 End D¢
FILTERS Agile
Test Set Assignee Status Component Search View ol
All v Al v v ¥ || Contains text X Clear
Show 10 entries Columns v
Key Summary Test Type #Req #Def Test Sets Assignee Status
— CALC- 3 . . Xpand IT
. 1 1944 verify_Arcs_entry_in_menu Generic 0 0 Admin [pPass |
Overall Execution Status Date
|

Cre

1

PASS Re:

Be:

TOTAL TESTS: 1 En

FILTERS Agil

Test Set Assignee Status Component Search Vie

All v Al 4 ~ ~ || Contains text X Clear
Show 10 entries Columns
Key Summary Test Type #Req #Def Test Sets Assignee Status
CALC- 3 . . Xpand IT
O [Pass
1 1944 verify_Arcs_entry_in_menu Generic 0 0 Admin

Mocha tests are mapped to Generic Tests in Jira, and the Generic Test Definition field contains the namespace, the name of the class, and the method
name that implements the Test case.

The execution screen details will provide information on the overall test run result.

Calculator / Test Execution: CALC-1952 / Test: CALC-1944

. . Export Test as Text A Return to Test E; ti
verify_Arcs_entry_in_menu 0 [BxortTestas Tex etum fo Test Exeeution

Execution Status [[l] PASS Assignee: Xpand IT Admin Versions: v3.0
Executed By: Xpand IT Admin Revision: -
Started On: 09/Jul/18 4:24 PM ©) Finished On: 09/Jul/18 4:24 PM Tests environments: [ANDRODERDLATORARDRODET)
Comment Proviow Comment ., | Execution Defects () CrostoDefect Crosto Sub-Task AddDefects , | Execution Evidences (0) Aad Eddonces |,

e Execution Details

Test Description ~
None
Test Detalls ~
Test Type: Generic
Definition: [veriy_Arcs_entry_in_menu.verity_Arcs_entry_in_menu |
Results ~
Context Error Message Duration Status

TestSuite Mocha_Spec_Sync_example. - 2sec (D

In Sauce Labs you can see some info about it.

@ SA UCE LABS D Access Real Devices Automation

«

Q) Dashboard

Automated Builds Automated Tests Live Tests
3 Live Testing
¢ Tunnels
Ll Analytics v
v Mocha Spec Sync example O
E Archives started Friday at 6:05PM by @darktelecom

NV Mocha Spec Sync example O
started Friday at 6:05PM by @darktelecom

References

® https://github.com/saucelabs-sample-test-frameworks/JS-Mocha-WebdriverlO-Appium-Android
® https://wiki.saucelabs.com/display/DOCS/Mobile+Application+Testing
® http://webdriver.io/guide/reporters/junit.html

@ Help v

Faa

54

@ Sergio Freire v

All statuses ~

Success
ran for 42s

Success
ran for 1m Os

https://github.com/saucelabs-sample-test-frameworks/JS-Mocha-WebdriverIO-Appium-Android
https://wiki.saucelabs.com/display/DOCS/Mobile+Application+Testing
http://webdriver.io/guide/reporters/junit.html

	Testing mobile apps in the cloud (Sauce Labs) using Webdriver and Mocha in Javascript

