
Testing using Cucumber in Perl
Overview
In this tutorial, we will create some tests in Cucumber for Perl.

The test (specification) is initially created in Jira as a Cucumber Test and afterwards, it is exported using the UI or the REST API.

Requirements
Install Test::BDD::Cucumber module
Clone of the Github repository " "test-bdd-cucumber-perl

Description
We will use the code from the Github repository " " with slight changes.test-bdd-cucumber-perl

The first step is to create two Cucumber Tests, one "Scenario" and one "Scenario Outline", in Jira. The specification would be similar to the calculator
example provided in the Github repository.

After creating the Tests in Jira and associating them with requirements, etc., you can export the specifications of the test to a Cucumber .feature file via the
REST API or the UI action from within the Test Execution issue.Export to Cucumber

The created file will be similar to the original, but will contain the references to the Test issue key and the covered requirement issue key.

With the code below, you'll create a simple feature file. Note that we introduced a bug in the Scenario Outline specification on purpose (i.e., "6/3=3").

features/basic_functions.feature

@CALC-xx
Feature: Basic Calculator Functions
 In order to check I've written the Calculator class correctly
 As a developer I want to check some basic operations
 So that I can have confidence in my Calculator class.

 @CALC-885 @CALC-886
 Scenario: First Key Press on the Display
 Given a new Calculator object
 And having pressed 1
 Then the display should show 1

 @CALC-886 @CALC-887
 Scenario Outline: Basic arithmetic
 Given a new Calculator object
 And having keyed <first>
 And having keyed <operator>
 And having keyed <second>
 And having pressed =
 Then the display should show <result>
 Examples:
 | first | operator | second | result |
 | 5.0 | + | 5.0 | 10 |
 | 6 | / | 3 | 3 |
 | 10 | * | 7.550 | 75.5 |
 | 3 | - | 10 | -7 |

Please check if the Scenario Outline is specified using the "Scenario Outline" keywords.

The steps are implemented in Perl code.

https://github.com/pjlsergeant/test-bdd-cucumber-perl
https://github.com/pjlsergeant/test-bdd-cucumber-perl

lib/Calculator.pm

package # hide from PAUSE indexer
 Calculator;
use strict;
use warnings;
use Moose;
has 'left' => (is => 'rw', isa => 'Num', default => 0);
has 'right' => (is => 'rw', isa => 'Str', default => '');
has 'operator' => (is => 'rw', isa => 'Str', default => '+');
has 'display' => (is => 'rw', isa => 'Str', default => '0');
has 'equals' => (is => 'rw', isa => 'Str', default => '');
sub key_in {
 my ($self, $seq) = @_;
 my @possible = grep { /\S/ } split(//, $seq);
 $self->press($_) for @possible;
}
sub press {
 my ($self, $key) = @_;
 # Numbers
 $self->digit($1) if $key =~ m/^([\d\.])$/;
 # Operators
 $self->key_operator($1) if $key =~ m/^([\+\-\/*])$/;
 # Equals
 $self->equalsign if $key eq '=';
 # Clear
 $self->clear if $key eq 'C';
}
sub clear {
 my $self = shift;
 $self->left(0);
 $self->right('');
 $self->operator('+');
 $self->display('0');
 $self->equals('');
}
sub equalsign {
 my $self = shift;
 $self->key_operator('+');
 my $result = $self->left;
 $self->clear();
 $self->equals($result);
 $self->display($result);
}
sub digit {
 my ($self, $digit) = @_;
 # Deal with decimal weirdness
 if ($digit eq '.') {
 return if $self->right =~ m/\./;
 $digit = '0.' unless length($self->right);
 }
 $self->right($self->right . $digit);
 $self->display($self->right);
}
sub key_operator {
 my ($self, $operator) = @_;
 my $cmd =
 $self->left
 . $self->operator
 . (
 length($self->right)
 ? $self->right
 : (length($self->equals) ? $self->equals : '0')
);
 $self->right('');
 $self->equals('');
 $self->left((eval $cmd) + 0);
 $self->display($self->left);
 $self->operator($operator);
}
1;

After running the tests and generating the Cucumber JSON report (e.g.,), it can be imported to Xray via the REST API or the data.json Import Execution
 action within the Test Execution.Results

pherkin -I lib -o JSON features/basic_functions.feature > data.json

The execution screen details will provide information on the test run result.

For a Cucumber Scenario Test:

The Cucumber Scenarios Example/Result details (i.e., and) are only available for executions done in Xray v2.2.0 Hooks, Backgrounds Steps
and above.

https://docs.getxray.app/download/attachments/46886974/data.json?version=2&modificationDate=1592938084760&api=v2

For a Cucumber Scenario Outline Test:

The icon represents the evidences ("embeddings") for each , but is only available for executions done in Hook, Background and Step
Xray v2.3.0 and above.

Learn more

Please see for an overview on how to use Cucumber Tests with Xray.Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

https://docs.getxray.app/download/attachments/46886974/cucumber_perl_scenario.png?version=2&modificationDate=1592938081659&api=v2
https://docs.getxray.app/download/attachments/46886974/cucumber_perl_examples.png?version=2&modificationDate=1592938081458&api=v2
https://docs.getxray.app/pages/viewpage.action?pageId=46887250

References
https://github.com/pjlsergeant/test-bdd-cucumber-perl/tree/master/examples/calculator
http://search.cpan.org/~sargie/Test-BDD-Cucumber/
Automated Tests (Import/Export)
Exporting Cucumber Tests - REST

https://github.com/pjlsergeant/test-bdd-cucumber-perl/tree/master/examples/calculator
http://search.cpan.org/~sargie/Test-BDD-Cucumber/
https://docs.getxray.app/pages/viewpage.action?pageId=46884768
https://docs.getxray.app/display/XRAY360/Exporting+Cucumber+Tests+-+REST

	Testing using Cucumber in Perl

