Testing web applications using Gwen and Selenium

® Overview
® Requirements
® Description
© Using Jira and Xray as master
© Using Git or other VCS as master
® FAQ and Recommendations
® References

Overview

In this tutorial, we will perform some web/Ul-based tests using Gwen.

Gwen uses the Given, When, Then syntax from Gherkin (thus, its name) to implement an interpretation engine that allows users to easily write "automated
tests" (i.e. automated scripts), whose steps will be executed implicitly by their corresponding code implementation. Thus, users can focus on writing
(executable) specifications without having to do all the implementation hard-work.

Gwen also separates declarative from imperative style Gherkin specifications. Declarative is done in standard .feature files that may include steps defined
in while imperative specifications (i.e. "meta-features") are managed in .meta files.

Gwen uses Selenium under the hood, by providing a DSL that allows users to interact with the browser without having to write code.

From the many interesting features of Gwen we can highlight the auto-update capability and also the ability taking screenshots, which will be available for
analysis after tests are run.

Requirements

® gwen
® gwen-web
® cucumber-json-merge
© npminstall -g cucunber-json-nerge

Description

We will use sample code from gwen-web repository, using some instructions available online.
Remember that we need to manage:

® features (declarative specifications, usually stored in .feature files)
* meta-features (imperative specifications, usually stored in .meta files)

Besides that, you need to decide is which workflow we'll use: do we want to use Xray/Jira as the master for writing the declarative specification or do we
want to manage those in Git?

G) Learn more

Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview of the possible workflows.

Using Jira and Xray as master

This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).

@ Please note

This tutorial explores using Xray for storing and managing the declarative scenarios and not the ones contained within the meta-features.

However, it should also be possible to manage them as Test issues with a "StepDef" label; it would require further evaluation though.

The first step is to create a Cucumber Test, of Cucumber Type "Scenario”, in Jira. The specification would be exactly the same as the one provided in the
original repository.


https://gwen-interpreter.github.io/
https://github.com/gwen-interpreter/gwen/wiki/Meta-Features
https://github.com/gwen-interpreter/gwen-web
https://gweninterpreter.wordpress.com/2017/12/18/gwen-workspaces/
https://docs.getxray.app/pages/viewpage.action?pageId=31622264

The test is quite self-explanatory, which is the ultimate purpose of using this approach: a browser is open, then we search by “Gwen automation” and then

we look at the first Google result.

@ calculator / [ CALC-28299

Perform a google search

@ Attach Create subtask ¢ Link issue El Link page E

Description

Add a description...

Linked issues
tests

) caLc-28317 Google search (gwen-web-demo)

Test Details
Cucumber v
1 Given I have Google in my browser

2 MWhen I do a search for "Gwen automation”
3 Then the first result should open a Gwen page

1T TopO

After creating the Test in Jira and associating it with requirements, etc., you can export the specification of the test to a Cucumber .feature file via the
REST API, or the Export to Cucumber Ul action from within the Test/Test Execution issue or even based on an existing saved filter. A plugin for your CI

tool of choice can be used to ease this task.

@ calculator / B CALC-28299
Perform a google search
@ Attach Create subtask & Linkissue El Link page E 000

Description

Add a description...

Test Details
Cucumber v
1 Given I have Google in my browser

2 When I do a search for "Gwen automation”
3 Then the first result should open a Gwen page

The coverage and the test results can be tracked in the "requirement” side (e.g. user story).

90f9 &
© <[]
STATUS Log work
ToDo v
Add flag
ASSIGNEE Xporter for JIRA

Unassigned Export to Cucumber

REPORTER Convert to Subtask

@ André Miguel Pereira Rodrig Move

Clone
LABELS
None Delete

NEW JIRA ISSUE VIEW
CENAS Turn off new issue view
None X

Configure
BEGIN DATE



) cALC-28317

Google search (gwen-web-demo)

@& Attach Create subtask & Linkissue El Link page = | °°°

Description

Add a description...

Linked issues +

is tested by

[ caLc-28299 Perform a google search 1 Topo

Test Coverage

Calculate the Test Coverage for the following scopes. i
Create new Sub Test Execution Create new Test
Latest Version Test Plan

Test Environment

All Environments v

Final statuses have precedence over non-final.

Status Key Summary Test Status

4 TODO CALC-28299 Perform a google search TODO

After being exported, the created .feature file will be similar to the original but will contain the references to the Test issue key and the covered requirement
issue key.

features/google.feature

@REQ _CALC- 28317
Feature: Googl e search (gwen-web-deno)

@EST_CALC- 28299
Scenario: Perform a google search
G ven | have Google in ny browser
Wien | do a search for "Gaen automation”
Then the first result should open a Gaen page

The steps correspond to reusable blocks, defined as @ StepDef scenarios within meta-feature files like the following one. This is the automation glue.



meta/google/Google.meta

Feature: Google search neta

@5t epDef

Scenario: | have Google in ny browser
Gven | start a new browser
Wien | navigate to "http://ww. googl e. cont
Then the page title should be "Google"

@t epDef

Scenario: | do a search for "<query>"
G ven the search field can be |ocated by nane "q"
When | enter "$<query>" in the search field
Then the page title should contain "$<query>"

@t epDef

Scenario: the first result should open a Gaen page
Gven the first match can be | ocated by css selector ".r > a"
Wien | click the first natch
Then the current URL should contain "gwen-interpreter”

In this example, we're assuming that this meta-feature is not imported to Xray nor managed there; thus, it will probably live in the VCS.

Besides the previous example, there are also additional tests for interacting with a demo page, with corresponding meta specification.

Gwen loads both standard and meta-features and finds the right code to execute.

After running the tests and generating the Cucumber JSON report (e.g., merged-test-results.json), it can be imported to Xray via the REST API or the Imp
ort Execution Results action within the Test Execution.

The cucumber-json-merge utility may be handy to merge the results of each feature.

./gwen -b -mneta -f json -r target/reports features
cucunber-json-nmerge -d target/reports/json/

# submt fromthe command |ine

BASE_URL=htt ps://xray. cl oud. get xray. app

token=$(curl -H "Content-Type: application/json" -X POST --data @cloud_auth.json" "$BASE_URL/ api/v2
[aut henticate"| tr -d '"")

curl -H "Content-Type: application/json" -X POST -H "Authorization: Bearer $token
results.json" "$BASE_URL/ api/v2/inport/execution/cucunber"”

--data @ merged-test-


https://github.com/gwen-interpreter/gwen-web/blob/master/features/floodio/FloodIO.feature
https://github.com/gwen-interpreter/gwen-web/blob/master/features/floodio/FloodIO.meta
https://docs.getxray.app/download/attachments/57477480/merged-test-results.json?version=1&modificationDate=1583599839587&api=v2
https://github.com/bitcoder/cucumber-json-merge

D cALC-28318

Execution results [1574163423567]

@ Attach Create subtask @ Link issue El Link page

Description

Add a description...

Tests

Overall Execution Status

Q --

0 -

TOTAL TESTS: ©
8 PASSED 1 FAILED
| v Filters + 10 Columns v
Rank* Key Summary Test Type Status Actions
o 1 CALC-28299  Perform a google search  Cucumber . FAILED 0 ee
@ 2 CALC-28300 Complete step 1 Cucumber  [[] PASSED E0 e
D 3 CALC-28301  Complete step 4 Cucumber  [[] PASSED E0 e

The execution screen details will provide information on the test run result that includes step-level information including duration.

Calculator / Test Execution: CALC-28318 / Test: CALC-28299
Perform a google search

Execution Status [l FAILED BEE BEEEEE"DE | K |
Started On: 19/Nov/2019 11:37 AM Finished On: 19/Nov/2019 11:37 AM
Comment Preview comment v Execution Defects (0)

© Execution Details

Test Description
Test Issue Links (1)
tests [ CALC-28317 Google search (gwen-web-demo)
Test Details
Test Type: Cucumber
Scenario Type: Scenario
Scenario: 1 Given I have Google in my browser
2 When I do a search for "Gwen automation”
3 Then the first result should open a Gwen page
Results
Context
Steps

Given | have Google in my browser
When | do a search for "Gwen automation”
Then the first result should open a Gwen page

Failed step [at line 18]: When I click the first match: Could not locate element: the first match

Import Execution Results

Export to Cucumber

° . Execution Evidence (0)

o

As shown above, besides a detailed error message, screenshots are also automatically available on failed steps.

~ Return to Test Execution Next >
Versions: -

Assignee:
Revision: -

Sérgio Freire

Executed By:
Sérgio Freire

Test Environments: -

Add Evidence v

4 1000

Duration Status

8secs (N NNNND

1secs PASSED
Tsecs (NZEEENED
5secs (N NNNND



On the “requirement”/user story side (i.e the “feature”) we can also see how this result impacting on the coverage.

[J CALC-28317

Google search (gwen-web-demo)

& Attach Create subtask @ Link issue E Link page = ees

Description

Add a description...

Linked issues +

is tested by

[@ CALC-28299 Perform a google search T topo

Test Coverage

Calculate the Test Coverage for the following scopes. F T A— Create new Test
Version Test Plan

Test Environment

All Environments v [ Nok

@D Final statuses have precedence over non-final.

Status Key Summary Test Status

1 ToDO CALC-28299 Perform a google search . FAILED

1

If we wanted to correct the previous error, in this case, we would need to correct the meta-feature file containing the specification of the step “Then the first
result page should open a Gwen page” and run the tests again.

Using Git or other VCS as master

You can edit your .feature and .meta files outside of Jira (eventually storing them in your VCS using Git, for example).
In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility of them and report results against them.

Thus, you need to import your .feature files to Xray/Jira; you can invoke the REST API directly or use one of the available plugins/tutorials for CI tools.

zip -r features.zip features/ -i \*.feature

BASE_URL=htt ps://xray. cl oud. get xray. app
token=$(curl -H "Content-Type: application/json" -X POST --data @cl oud_auth.json" "$BASE_URL/api/v2

/authenticate"| tr -d "'"")
curl -H "Content-Type: nultipart/formdata" -H "Authorization: Bearer $token" -F "file=@eatures.zip"

"$BASE_URL/ api / v2/i nport/f eature?project Key=CALC'

@ Please note

Each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again then Xray can
update the existent Test and don't create any duplicated tests.



Afterward, you can export those features out of Jira based on some criteria, so they are properly tagged, run them and import back the results to correct
entities in Xray.

If we change the specification (i.e. the Gherkin scenarios), we need to import the .feature(s) once again.

Therefore, in the Cl we always need to start by importing the .feature file(s) to keep Jira/Xray on synch.

FAQ and Recommendations

Please see this page.

References

https://gwen-interpreter.github.io/
https://github.com/gwen-interpreter/gwen
https://github.com/gwen-interpreter/gwen-web
https://gweninterpreter.wordpress.com/

Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
https://github.com/bitcoder/cucumber-json-merge

Automated Tests (Import/Export)

Exporting Cucumber Tests - REST


https://docs.getxray.app/pages/viewpage.action?pageId=31622264#TestinginBDDwithGherkinbasedframeworks(e.g.Cucumber)-Commonproblems
https://gwen-interpreter.github.io/
https://github.com/gwen-interpreter/gwen
https://github.com/gwen-interpreter/gwen-web
https://gweninterpreter.wordpress.com/
https://docs.getxray.app/pages/viewpage.action?pageId=31622264
https://github.com/bitcoder/cucumber-json-merge
#
https://docs.getxray.app/display/XRAYCLOUD/Exporting+Cucumber+Tests+-+REST

	Testing web applications using Gwen and Selenium

