Testing using Serenity and Cucumber in Java

® Overview
® Requirements
® Description
© Using Jira and Xray as master
© Using Git or other VCS as master
® FAQ and Recommendations
® References

Overview

Serenity BDD is a framework for assisting in automated acceptance testing using BDD.
It provides the ability to write executable specifications, run them and produce comprehensive reports.

In this tutorial, we will create some tests using Serenity BDD along with Cucumber. The specification will be done using standard Cucumber .feature files,
where each test is written as a Scenario or Scenario Outline. The corresponding steps implementation will be done in Java.

The tutorial details slightly different instructions depending on where you want to perform the edition of your features and corresponding scenarios (please
check the possible workflows).

Requirements

serenity-bdd

cucumber

chromedriver (a version that supports your current Chrome version)
maven

Chrome

Description

This tutorial is highly based on an existing Serenity+Cucumber quick start project with some minor changes.

The business-readable tests aim to validate a search engine using some examples that interact with it using Selenium WebDriver and Chrome.

@ Please note

The code used for this tutorial can be found here; you may also find the original unchanged project here.

The serenity configuration file can be used as such but it can be updated to customize certain Serenity behaviours.

serenity.properties

serenity. proj ect.nane=Serenity and Cucunber Quick Start

Even though you could follow the page-objects pattern, Serenity favors the Screenplay pattern. Thus, instead of abstracting every single page as a class
using the page-objects pattern, users are advised to implement classes that abstract an actor/personna that interacts with the application.

These actors can perform business-understandable actions/tasks, also known as steps. In code they should have the @Step annotation, so they can be
understood as such and appear in the reports, for example.

One can see each actor/personna related class as a step library. A step library adds a layer of abstraction between the "what" and the "how" of our
acceptance tests.

Multiple step libraries can be used to provide the building blocks for writing the our executable test specification.

http://www.thucydides.info/
https://docs.getxray.app/pages/viewpage.action?pageId=31622264
https://github.com/serenity-bdd/serenity-cucumber-starter
http://serenity-bdd.info/docs/articles/screenplay-tutorial.html
https://github.com/bitcoder/serenity-cucumber-starter
https://github.com/serenity-bdd/serenity-cucumber-starter

@ Please note

Steps should be focused in the "what" we are aiming to achieve and not not on the "how". A step can, in turn, invoke other more technical
methods that implement the "how".

Whenever using Cucumber along with Serenity, Cucumber step definitions are used as an additional layer of abstraction on top of standard step libraries.

Methods implementing them use the typical Gherkin @Given, @When, @Then annotations from the Cucumber library.

@t eps
Navi gat eTo navi gat eTo;

@hen(""s?he searches for \"(.*)\"")
public void i_search_for(String term {
searchFor.term(term); // this

}

In this tutorial, all steps are defined and referenced from within a class. Some variables have the @Steps annotation, so their respective class has also
business-related steps.

src/test/java/starter/stepdefinitions/SearchOnDuckDuckGoStepDefinitions.java

package starter.stepdefinitions;

i nport io.cucunber.java.en. G ven;

i mport io.cucunber.java.en. Then;

i nport io.cucunber.java. en. Wen;

i nport net.thucydides. core. annotati ons. St eps;
import starter.navigation. Navi gat eTo;

import starter.search. SearchFor;

import starter.search. SearchResul t;

inport static org.assertj.core.api.Assertions.assertThat;
inmport static starter.matchers. Text Matcher.textOf;

public class SearchOnDuckDuckGoSt epDefinitions {

@5t eps
Navi gat eTo navi gat eTo;

@t eps
Sear chFor sear chFor;

@5t eps
SearchResult searchResult;

@ ven(""(?:.*) is on the DuckDuckGo hone page")

public void i _amon_t he_DuckDuckGo_home_page() {
navi gat eTo. t heDuckDuckGoHonePage() ;

}

@When(""s?he searches for \"(.*)\"")
public void i_search_for(String term {
searchFor.term(tern);

}

@hen("”all the result titles should contain the word \"(.*)\"")
public void all_the_result_titles_should_contain_the word(String term {
assert That (searchResult.titles())
.matches(results -> results.size() > 0)
.all Match(title -> textOf(title).containslgnoringCase(term);

By default, standard Cucumber .feature files live in the src/ t est/ resour ces/ f eat ur es directory.

However, this can be customized as a option to the runner class.

src/test/javal/starter/CucumberTestSuite.java

@RunW t h(Cucunber Wt hSerenity. cl ass)
@ucunber Opt i ons(
features = "features/",
plugin = {
"pretty", "htm:target/serenity-reports//serenity-htm-report”,
"json:target/serenity-reports/cucunber_report.json",
"rerun:target/serenity-reports/rerun.txt"

It can also be enforced whenever running maven from the command line using a system property (e.g. - Dcucunber . f eat ures="f eatures/").

We will also configure the runner to generate a Cucumber JSON report containing test results that can be processed by Xray.

We've updated slightly the feature from the upstream project, to make the two scenarios a bit more different. You can also see a tag before the "Feature”,
which gives the ability to automatically link the scenarios to some existing story/requirement in Jira.

src/test/resources/features/search/search_by_keyword.feature

@REQ CALC- 6399
Feature: Search by keyword

@ucunber @reen
Scenario: Searching for a food term
G ven Sergey is on the DuckDuckGo home page
Wien he searches for "cucunber food"
Then all the result titles should contain the word "reci pes"

@ucunber @rown
Scenario: Searching for a gherkin
G ven Sergey is on the DuckDuckGo hone page
Wien he searches for "cucunber"
Then all the result titles should contain the word "cucunber”

Remember that we need to manage:

* features (declarative specifications, usually stored in .feature files)
® their implementation

Besides that, you need to decide is which workflow we'll use: do we want to use Xray/Jira as the master for writing the declarative specification or do we
want to manage those in Git, for example?

G) Learn more

Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview of the possible workflows.

https://docs.getxray.app/pages/viewpage.action?pageId=31622264

Using Jira and Xray as master
This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).
The first step is to create "Cucumber" Tests, of Cucumber Type "Scenario", in Jira.

Tests can be created from the user story issue screen.

Projects / [@ Calculator / [CALC-29370

As a user, | can search by keywords using DuckDuckGo

& Attach Create subtask & Linkissue =~ = TestCoverage ce-

Description

As a user, | can search by keywords using DuckDuckGo

Linked issues +
is tested by

B caLc-29368 Searching for a food term 1 ToDO

[caLc-29367 Searching for a gherkin 1 Topo
Test Coverage

Create new Sub Test Execution Create new Test

The specification would be exactly the same as the one provided in one of the scenarios in the the original repository.

-~ e - .~ . . T

The test is quite self-explanatory, which is the ultimate purpose of using this approach: a browser is open on the "DuckDuckGo" home page, search by
“cucumber” and then we check if all results contain the word "cucumber" in the title.

Projects / Calculator / [CALC-29367

Searching for a gherkin
' e B8 Q -

Description

Add a description...

Linked issues +
tests

[J caLc-29370 As a user, | can search by keywords using DuckDuckGo 1 TopO
Test Details

Cucumber v Test Repository

Scenario

1 Given Sergey is on the DuckDuckGo home page
2 When he searches for "cucumber"
3 Then dll the result titles should contain the word "cucumber"

We would repeat this for every Scenario/Scenario we would like to specify.

Then, we need to export these executable scenarios as .feature file(s) in order to run them (locally or in the Cl environment). This may be done via the
REST API, or the Export to Cucumber Ul action from within the Test/Test Execution issue or even based on an existing saved filter.

In this case, we are going to use a saved filter in Jira; we will use its id later on. The filter can contain Test issues, to user stories, Test Plans, Test
Executions; Xray will always find out the related Test issues.

serenity_cucumber_demo saveas Details

@ project = CALC AND issuetype = Test AND labels in (green, brown) ®

Order by v

@ cawc-20368 Projects / @ Calculator / [CALC-29368

Searching for a food term

@ caLc-29367 Searching for a food term

Searching for a gherkin
¢ 3 oB0OOQ -
Description
Add a description...

+

Linked issues
tests

[cALc-29370 As a user, | can search by ke... 1T Topo

Test Details

Cucumber v Test Repository

Scenario

1 n the DuckDuckGo home page
2 for "cucumber food"
3 Lt titles should contain the word "recipes"

(%]

A plugin for your CI tool of choice (e.g. Jenkins) can be used to ease this task.

Build

Xray: Cucumber Features Export Task

JIRA Instance = xray cloud

Issues:
Filter: 10305
File Path: features

Click here for more details

You could also do it from the command line.

example of exporting features from the command line

token=$(curl -H "Content-Type: application/json" -X POST --data @cl oud_auth.json" https://xray.cloud. getxray.

app/ api /v2/authenticate| tr -d '"")
curl -H "Content-Type: application/json" -X GET -H "Authorization: Bearer $token" "https://xray.cloud. getxray.

app/ api / v2/ export/cucunber ?filter=10315" -o features.zip

rm-rf features/*
unzip -o features.zip -d features

We will store the exported .feature(s) in a temporary folder (e.g. f eat ur es/), that we need to clean before the export process.

After being exported, the created .feature file will be similar to the original one but will contain the references to the Test issue key and the covered
requirement issue key.

@REQ _CALC- 29370
Feature: As a user, | can search by keywords using DuckDuckGo
#As a user, | can search by keywords using DuckDuckGo

@EST_CALC- 29368 @ucunber @reen
Scenario: Searching for a food term
G ven Sergey is on the DuckDuckGo home page
When he searches for "cucunber food"
Then all the result titles should contain the word "reci pes”
@EST_CALC- 29367 @rown @ucunber
Scenario: Searching for a gherkin
G ven Sergey is on the DuckDuckGo home page
When he searches for "cucunber”
Then all the result titles should contain the word "cucunber”

Tests can be run using Maven; we need to tell the runner to pick the .feature files from the "features/" folder using the "cucumber.features" system property.

rm-r target/serenity-reports/*
mvn clean verify -Denvironnment=stagi ng - Dcucunber. features="features/"

After running the tests and generating the Cucumber JSON report (e.g., cucumber_report.json), it can be imported to Xray via the REST API or the Import
Execution Results action within the Test Execution or by using one of available plugins for CI tools.

Post-build Actions

Cucumber reports

Xray: Results Import Task

JIRA Instance = xray cloud
Format Cucumber JSON

Parameters
Execution Report File (file path with file name) larget/serenity-reporls/cucumber_report.json|

example of importing results from the command line

token=$(curl -H "Content-Type: application/json" -X POST --data @cloud_auth.json" https://xray.cloud. getxray.
app/ api /v2/ aut henticate| tr -d '"")

curl -H "Content-Type: application/json" -X POST -H "Authorization: Bearer $token" --data @target/serenity-
reports/cucunber_report.json" https://xray.cloud. getxray. app/ api/v2/inport/execution/cucunber

A Test Execution containing the results for each test scenario will be created.

https://docs.getxray.app/download/attachments/62262572/cucumber_report.json?version=1&modificationDate=1592817213206&api=v2
https://docs.getxray.app/pages/viewpage.action?pageId=14193659

Projects / Calculator / [@ CALC-29371

Execution results [1588931755863]

@ Attach Create subtask @@ Linkissue v [Tests «ee

Description

Add a description...

Tests
©
Overall Execution Status TOTAL TESTS: 2
1PASSED 1FAILED
| v Filters v 10 v Columns v
Rank* Key Summary Test Type testcaseimporterradiobutton = Status
Searching
o1 CALC- fora Cucumber .PASSED
29367 .
gherkin
Searching
ALC-
2 293:3:8 I::r:food Cucumber .FAILED

The execution screen details will provide information on the test run result that includes step-level information including duration; in this case we can only
see the Gherkin-level keywords.

Test Details ~
Test Type: Cucumber
Scenario Type: Scenario
Scenario: 1 Given Sergey is on the DuckDuckGo home page

2 When he searches for "cucumber food"
3 Then dall the result titles should contain the word "recipes"

Results ~
Context Duration Status
- EECGI FAILED
Steps
Given Sergey is on the DuckDuckGo home page 6 secs
When he searches for "cucumber food" KEJ PASSED |
Then all the result titles should contain the word "recipes” 191 millisec (0D

java.lang.AssertionError:
Expecting all elements of:
<["Sea cucumber as food - WikipediaYour browser indicates if you've visited this link",
"1,000+ Free Cucumber & Food Images - PixabayYour browser indicates if you've visited this link",
"11 Best Cucumber Recipes | Easy Cucumber Recipes - NDTV FoodYour browser indicates if you've visited this link",
"7 Health Benefits of Eating CucumberYour browser indicates if you've visited this link",
"Cucumber recipes | BBC Good FoodYour browser indicates if you've visited this link",
"Cucumber Recipes : Food Network | Food NetworkYour browser indicates if you've visited this link",
"7 Coolest Benefits Of Cucumbers You Cannot Miss | Organic FactsYour browser indicates if you've visited this link",
"Cucumber recipes - BBC FoodYour browser indicates if you've visited this link",
"Smashed Cucumber Salad Recipe - How to Make the... - YouTubeYour browser indicates if you've visited this link",
"Cucumbers | World's Healthiest Foods RatingYour browser indicates if you've visited this link"]>
to match given predicate but this element did not:
<"Sea cucumber as food - WikipediaYour browser indicates if you've visited this link">
at java.util.Optional.ifPresent(Optional.java:159)

On the “requirement”/user story side (i.e the “feature”) we can also see how this result impacting on the coverage.

Projects / @ Calculator / [J CALC-29370

As a user, | can search by keywords using DuckDuckGo

@ Attach Create subtask @ Linkissue v = Test Coverage sse

Description

As a user, | can search by keywords using DuckDuckGo

Linked issues +
is tested by

[cALc-29368 Searching for a food term T o000

[CALC-29367 Searching for a gherkin 1 Topo

Test Coverage

Calculate the Test Coverage for the following scopes. e S Tosh ey e
Version Test Plan

Test Environment

Al Environments v [Nok

Final statuses have precedence over non-final.

Status Key Summary Test Status
41 .. ToDO CALC-29367 Searching for a gherkin PASSED
4 .. ToDO CALC-29368 Searching for a food term . FAILED

1

Using Git or other VCS as master
You can edit your .feature outside of Jira/Xray (eventually storing them in your VCS using Git, for example).

In our example, the feature file can be found at src/ t est/resour ces/ f eat ures/ search/ search_by_keyword. f eat ure.

src/test/resources/features/search/search_by_keyword.feature

@REQ_CALC- 29370
Feature: Search by keyword

@ucunber @reen
Scenario: Searching for a food term
G ven Sergey is on the DuckDuckGo home page
When he searches for "cucunber food"
Then all the result titles should contain the word "reci pes”

@ucunber @rown
Scenario: Searching for a gherkin
G ven Sergey is on the DuckDuckGo hone page
Wien he searches for "cucunber”
Then all the result titles should contain the word "cucunber”

Note: we can link the tests/scenarios to an existing user story/requirement in Jira/Xray by adding a tag before the "Feature" element

In any case, you'll need to synchronize your .feature files to Jira/Xray so that you can have visibility of them and report results against them.
Thus, you need to import your .feature files to Xray/Jira which will create (or update) Test and Pre-Condition entities in Xray. The process is idem-potent.

You can invoke the REST API directly, or use one of the available plugins for well-known CI tools (e.g. Jenkins), and choose the destination project.

https://docs.getxray.app/pages/viewpage.action?pageId=14193659

Build

Xray: Cucumber Features Import Task

Jira Instance xray cloud

Project Key CALC

Cucumber feature files directory | src/test/resources/features

Modified in the last hours 10

Sample shell script

BASE_URL=htt ps://xray. cl oud. get xray. app

rm features. zip

zip -r features.zip src/test/resources/features/ -i *.feature

token=$(curl -H "Content-Type: application/json" -X POST --data @cl oud_auth.json" "$BASE_URL/api/v2
/authenticate"| tr -d '"")

curl -H "Content-Type: nultipart/formdata" -H "Authorization: Bearer $token" -F "file=@eatures.zip"
"$BASE_URL/ api / v2/i nport/f eature?project Key=CALC"

The tests will be created (or updated if they already exist); internally, Xray will track the original .feature where the scenario came from.

Projects / @ Calculator / [CALC-29367

Searching for a gherkin ToDo v
2 &g -
@ g ¢ E .J .J Assignee
Unassigned
Description
Add a description... Reporter
* Sérgio Freire
Linked issues
+ Labels
tests brown cucumber
[) cALC-29370 As a user, | can search by keywords using DuckDuckGo 1T Topo
cenas
None
Test Details
T o Test Repository Begin Date
None
Scenario
1 Given Sergey is on the DuckDuckGo home page End Date
2 When he searches for "cucumber" None
3 Then all the result titles should contain the word "cucumber"”
Projects / @ Calculator / @ CALC-29368
Searching for a food term ToDo v
D &g -
¢ B ¢ E .J .J Assignee
Unassigned
Description
Add a description... Reporter
* Sérgio Freire
Linked issues
+ Labels
tests
cucumber green
[J cALC-29370 As a user, | can search by keywords using DuckDuckGo 1 Topo
cenas
None
Test Details
e ~ Test Repository Begin Date
None
Scenario
1 Given Sergey is on the DuckDuckGo home page End Date
2 When he searches for "cucumber food" None

3 Then all the result titles should contain the word "recipes"

(D Please note

In simple terms, each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again
then Xray can update the existent Test and don't create any duplicated tests; each Background will be created as a Pre-Condition.

More info in Importing Cucumber Tests - REST.

Afterward, you can export those features out of Jira based on some criteria, so they are properly tagged.
As an example, we can export the tests based on the covered issue; you could use also a saved Jira filter using its filter id.

Below you can see an example using Xray Jenkins plugin.

https://confluence.xpand-it.com/display/XRAY/Integration+with+Jenkins
https://docs.getxray.app/display/XRAYCLOUD/Importing+Cucumber+Tests+-+REST

Build

Xray: Cucumber Features Export Task

JIRA Instance = xray cloud

Issues:
Filter: 10305]|
File Path: features

Click here for more details

You could also do it from the command line.

example of exporting features from the command line

token=$(curl -H "Content-Type: application/json" -X POST --data @cloud_auth.json" https://xray.cloud. getxray.
app/ api /v2/authenticate| tr -d '"")

curl -H "Content-Type: application/json" -X GET -H "Authori zation: Bearer $token" "https://xray.cloud. getxray.
app/ api / v2/ export/cucunber ?filter=10315" -o features.zip

rm-rf features/*
unzip -o features.zip -d features

This will produce a .feature file with the Scenario(s)/Scenario Outline(s) tagged with the respective Test issue keys.

features/1_CALC-6399.feature

@REQ _CALC- 29370
Feature: As a user, | can search by keywords using DuckDuckGo
#As a user, | can search by keywords using DuckDuckGo

@EST_CALC- 29368 @ucunber @reen
Scenario: Searching for a food term
G ven Sergey is on the DuckDuckGo hone page
When he searches for "cucunber food"
Then all the result titles should contain the word "reci pes”
@EST_CALC- 29367 @rown @ucumnber
Scenario: Searching for a gherkin
G ven Sergey is on the DuckDuckGo hone page
When he searches for "cucumber”
Then all the result titles should contain the word "cucunber”

Tests can be run using Maven; we need to tell the runner to pick the .feature files from the "features/" folder using the "cucumber.features" system property.

rm-r target/serenity-reports/*
mvn cl ean verify -Denvironnment=stagi ng - Dcucunber. f eatures="features/"

After running the tests and generating the Cucumber JSON report (e.g., cucumber_report.json), it can be imported to Xray via the REST API or the Import
Execution Results action within the Test Execution or by using one of available plugins for Cl tools.

https://docs.getxray.app/download/attachments/62262572/cucumber_report.json?version=1&modificationDate=1592817213206&api=v2
https://docs.getxray.app/pages/viewpage.action?pageId=14193659

Post-build Actions

Cucumber reports

Xray: Results Import Task

JIRA Instance = xray cloud
Format Cucumber JSON

Parameters

Execution Report File (file path with file name) larget/serenity-reponslcucumber_report.json|

example of importing results from the command line

token=$(curl -H "Content-Type: application/json" -X POST --data @cloud_auth.json" https://xray.cloud. getxray.
app/ api /v2/authenticate| tr -d '"")

curl -H "Content-Type: application/json" -X POST -H "Authorization: Bearer $token" --data @target/serenity-
reports/cucunber_report.json" https://xray.cloud. getxray. app/ api/v2/inport/execution/cucunber

A Test Execution containing the results for each test scenario will be created.
Projects / [@ Calculator / [@ CALC-29371

Execution results [1588931755863]

@ Attach Create subtask @ Llinkissue v G_J Tests oo

Description

Add a description...

Tests

© o -

Overall Execution Status TOTAL TESTS: 2
|

PASSED 1 FAILED

| v Filters v 10 v Columns v

Rank* Key Summary Test Type testcaseimporterradiobutton = Status
Searching

1 CALC- fora Cucumber PASSED

29367 .
gherkin
Searching
. CALC-
2 29368 Iz:nifood Cucumber .FAILED

The execution screen details will provide information on the test run result that includes step-level information including duration; in this case we can only
see the Gherkin-level keywords.

Test Details

Test Type: Cucumber
Scenario Type: Scenario
Scenario: 1 Given Sergey is on the DuckDuckGo home page

2 When he searches for "cucumber food"
3 Then dall the result titles should contain the word "recipes"

Results

Context

Steps

Given Sergey is on the DuckDuckGo home page

When he searches for "cucumber food"

Then all the result titles should contain the word "recipes"

java.lang.AssertionError:
Expecting all elements of:
<["Sea cucumber as food - WikipediaYour browser indicates if you've visited this link",
1,000+ Free Cucumber & Food Images - PixabayYour browser indicates if you've visited this link",
"11 Best Cucumber Recipes | Easy Cucumber Recipes - NDTV FoodYour browser indicates if you've visited this link",
"7 Health Benefits of Eating CucumberYour browser indicates if you've visited this link",
"Cucumber recipes | BBC Good FoodYour browser indicates if you've visited this link",
"Cucumber Recipes : Food Network | Food NetworkYour browser indicates if you've visited this link",
"7 Coolest Benefits Of Cucumbers You Cannot Miss | Organic FactsYour browser indicates if you've visited this link",
"Cucumber recipes - BBC FoodYour browser indicates if you've visited this link",
"Smashed Cucumber Salad Recipe - How to Make the... - YouTubeYour browser indicates if you've visited this link",
"Cucumbers | World's Healthiest Foods RatingYour browser indicates if you've visited this link"]>
to match given predicate but this element did not:
<"Sea cucumber as food - WikipediaYour browser indicates if you've visited this link">
at java.util.Optional.ifPresent(Optional.java:159)

On the “requirement”/user story side (i.e the “feature”) we can also see how this result impacting on the coverage.

Projects / @ Calculator / [J CALC-29370

As a user, | can search by keywords using DuckDuckGo

@ Attach Create subtask @ Linkissue v = Test Coverage sse

Description

As a user, | can search by keywords using DuckDuckGo

Linked issues +
is tested by

@ cALc-29368 Searching for a food term T o000

[CcALC-29367 Searching for a gherkin 1 TopO
Test Coverage

Calculate the Test Coverage for the following scopes. e e S Tos By N
Version Test Plan

Test Environment

Al Environments v [Nok

Final statuses have precedence over non-final.

Status Key Summary Test Status
1.. ToDO CALC-29367 Searching for a gherkin [PAsSED
4 .. Tobo CALC-29368 Searching for a food term . FAILED
e 1 e

If we change the specification (i.e. the Gherkin scenarios), we need to import the .feature(s) once again.

Therefore, in the Cl we always need to start by importing the .feature file(s) to keep Jira/Xray on synch.

Duration Status

RGN FAILED

6secs |

3secs | PASSEL

191 miltisec (IEYCNIND

FAQ and Recommendations

Please see this page.

References

Serenity BDD (formerly Thucydides)
https://johnfergusonsmart.com/serenity-bdd/

Sample project using Serenity and Cucumber

Step libraries article

An Introduction to BDD Test Automation with Serenity and Cucumber-JVM

https://docs.getxray.app/pages/viewpage.action?pageId=31622264#TestinginBDDwithGherkinbasedframeworks(e.g.Cucumber)-Commonproblems
http://www.thucydides.info/
https://johnfergusonsmart.com/serenity-bdd/
https://github.com/serenity-bdd/serenity-cucumber-starter
https://johnfergusonsmart.com/need-know-serenity-bdd-step-libraries/
http://An Introduction to BDD Test Automation with Serenity and Cucumber-JVM

	Testing using Serenity and Cucumber in Java

