
Testing using Behat in PHP

Overview
Requirements
Description

Using Jira and Xray as master
Using Git or other VCS as master

References

Overview
In this tutorial, we will implement some Gherkin tests using  and PHP.Behat

Requirements
behat
behat-cucumber-formatter ( )patched

Description
We will use the example provided in Behat's , which describes a feature of a .quick start documentation product basket

The classes implementing our basket are quite simple and reflect the rules defined for the feature:

VAT is 20%
Delivery for basket under £10 is £3
Delivery for basket over £10 is £2

http://behat.org/
https://github.com/Vanare/behat-cucumber-formatter/pull/20
http://behat.org/en/latest/quick_start.html


features/bootstrap/Basket.php

<?php

// features/bootstrap/Basket.php

final class Basket implements \Countable
{
    private $shelf;
    private $products;
    private $productsPrice = 0.0;

    public function __construct(Shelf $shelf)
    {
        $this->shelf = $shelf;
    }

    public function addProduct($product)
    {
        $this->products[] = $product;
        $this->productsPrice += $this->shelf->getProductPrice($product);
    }

    public function getTotalPrice()
    {
        return $this->productsPrice
            + ($this->productsPrice * 0.2)
            + ($this->productsPrice > 10 ? 2.0 : 3.0);
    }

    public function count()
    {
        return count($this->products);
    }
}

features/bootstrap/Shelf.php

<?php

// features/bootstrap/Shelf.php

final class Shelf
{
    private $priceMap = array();

    public function setProductPrice($product, $price)
    {
        $this->priceMap[$product] = $price;
    }

    public function getProductPrice($product)
    {
        return $this->priceMap[$product];
    }
}

We aim to use Gherkin in Behat to describe our scenarios and have an executable specification.

Remember that we need to manage:

features (declarative specifications, usually stored in .feature files)
corresponding automation code glue



Besides that, : do we want to use Xray/Jira as the master for writing the declarative specification or do we want you'll need to decide which workflow to use:
to manage those in Git?

Using Jira and Xray as master

This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).

The first step is to create a "Cucumber" Test (you can also use "Behat" as a valid test type, as long as it has been defined as a possible option for the Test 
Type custom field).

The test is quite self-explanatory, which is the ultimate purpose of using this approach: given an existing item, add it to the basket and check the basket.

 

After creating the Test in Jira and associating it with requirement(s), etc., you can export the specification of the test to a ".feature" file via the REST API, or 
the UI action from within the Test/Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice Export to Cucumber 
can be used to ease this task.

Learn more

Please see  for an overview of the possible workflows.Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

https://docs.getxray.app/pages/viewpage.action?pageId=46887250


 

The coverage and the test results can be tracked in the "requirement" side (e.g. user story).



After being exported, the created .feature file will contain the references to the Test issue key(s) and the covered requirement issue key, besides the 
scenario specification.

The following example shows a feature with 4 scenarios, which correspond to 4 Test issues in Xray.

features/1_CALC-6132.feature

@REQ_CALC-6132
Feature: Product basket
        #In order to buy products
        #  As a customer
        #  I need to be able to put interesting products into a basket
        #
        #  Rules:
        #  - VAT is 20%
        #  - Delivery for basket under £10 is £3
        #  - Delivery for basket over £10 is £2

        @TEST_CALC-4523 @CALC-4592 @CALC-5022 @1.feature @xpto
        Scenario Outline: Buying a product under £10
                Given there is a "<product>", which costs £<price>
                When I add the "<product>" to the basket
                Then I should have 1 product in the basket
                And the overall basket price should be £<total>

                        Examples:
                                | product | price | total |
                                | pen     | 5     | 9     |
                                | book    | 4     | 7.8   |

        @TEST_CALC-4520 @CALC-4592 @CALC-5022 @1.feature
        Scenario: Buying two products over £10
                Given there is a "Sith Lord Lightsaber", which costs £10
                And there is a "Jedi Lightsaber", which costs £5
                When I add the "Sith Lord Lightsaber" to the basket
                And I add the "Jedi Lightsaber" to the basket
                Then I should have 2 products in the basket
                And the overall basket price should be £20

        @TEST_CALC-4519 @CALC-4592 @CALC-5022 @1.feature
        Scenario: Buying a single product over £10
                Given there is a "Sith Lord Lightsaber", which costs £15
                When I add the "Sith Lord Lightsaber" to the basket
                Then I should have 1 product in the basket
                And the overall basket price should be £19

        @TEST_CALC-4518 @CALC-4592 @CALC-5022 @1.feature
        Scenario: Buying a single product under £10
                Given there is a "Sith Lord Lightsaber", which costs £5
                When I add the "Sith Lord Lightsaber" to the basket
                Then I should have 1 product in the basket
                And the overall basket price should be £9

The automation glue (i.e. the code corresponding to each one of these sentences - our step definitions) lives outside Jira and resides typically in some 
version control system, such as Git.

In this case, it is stored in a file name  .features/bootstrap/FeatureContext.php



features/bootstrap/FeatureContext.php

<?php

// features/bootstrap/FeatureContext.php

use Behat\Behat\Tester\Exception\PendingException;
use Behat\Behat\Context\SnippetAcceptingContext;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;
use PHPUnit\Framework\Assert;

class FeatureContext implements SnippetAcceptingContext
{
    private $shelf;
    private $basket;

    public function __construct()
    {
        $this->shelf = new Shelf();
        $this->basket = new Basket($this->shelf);
    }

    /**
     * @Given there is a :product, which costs £:price
     */
    public function thereIsAWhichCostsPs($product, $price)
    {
        $this->shelf->setProductPrice($product, floatval($price));
    }

    /**
     * @When I add the :product to the basket
     */
    public function iAddTheToTheBasket($product)
    {
        $this->basket->addProduct($product);
    }

    /**
     * @Then I should have :count product(s) in the basket
     */
    public function iShouldHaveProductInTheBasket($count)
    {
        Assert::assertCount(
            intval($count),
            $this->basket
        );
    }

    /**
     * @Then the overall basket price should be £:price
     */
    public function theOverallBasketPriceShouldBePs($price)
    {
        Assert::assertSame(
            floatval($price),
            $this->basket->getTotalPrice()
        );
    }
}

After running the tests and generating the "Cucumber" compatible JSON  report (e.g., ), it can be imported to Xray via the REST API, or the report.json Imp
 action within the Test Execution, or by using one of the available CI plugins.ort Execution Results

https://docs.getxray.app/download/attachments/62262996/report.json?version=1&modificationDate=1592935967423&api=v2


vendor/bin/behat -f cucumber_json
curl -H "Content-Type: application/json" -X POST -u admin:admin --data @"reports/report.json" http://jiraserver.
example.com/rest/raven/1.0/import/execution/cucumber

The execution screen details will provide information on the test run result that includes step-level information including duration.

Note that the following test has a bug on purpose; in this case, the bug is not in the implementation but on the actual specification of the scenario. 



As shown above, detailed error messages can be tracked per each step.

 the “requirement”/user story side (i.e the “feature”) we can also see how this result ; in this case, the story/feature is "NOK" On impacts the coverage
because the latest result for the test "Buying a single product over 10" is FAIL.

If we wanted to correct the previous error,  we would need to correct the last Gherkin step of the failing scenario in this case, and run the tests again.



Using Git or other VCS as master

You can edit your .feature and .meta files outside of Jira by storing them in your VCS using Git, for example.

In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility  them and report results against them.over

Thus,  need to import your .feature files to Xray/Jira; you can invoke the REST API directly or use one of the available plugins/tutorials for CI tools.you

cd features
rm features.zip
zip -R features.zip -i \*.feature
curl -H "Content-Type: multipart/form-data" -u admin:admin -F "file=@features.zip" "http://jiraserver.example.
com/rest/raven/1.0/import/feature?projectKey=CALC"

Afterward, you can export those features out of Jira based on some criteria, so they are properly tagged, run them and import  back the results to the correct
entities in Xray (as shown in the first scenario above).

References
https://behat.org
http://behat.org/en/latest/quick_start.html
https://github.com/Vanare/behat-cucumber-formatter
Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
https://github.com/bitcoder/cucumber-json-merge
Automated Tests (Import/Export)

Please note

Each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again then Xray can 
update the existent Test and  create any duplicated tests.don't

https://behat.org/
http://behat.org/en/latest/quick_start.html
https://github.com/Vanare/behat-cucumber-formatter
https://docs.getxray.app/pages/viewpage.action?pageId=46887250
https://github.com/bitcoder/cucumber-json-merge
https://docs.getxray.app/pages/viewpage.action?pageId=46884768


Exporting Cucumber Tests - REST

https://docs.getxray.app/display/XRAY360/Exporting+Cucumber+Tests+-+REST

	Testing using Behat in PHP

