Testing using Behat in PHP

® Overview
® Requirements
® Description
© Using Jira and Xray as master
© Using Git or other VCS as master
® References

Overview

In this tutorial, we will implement some Gherkin tests using Behat and PHP.

Requirements

® behat
® behat-cucumber-formatter (patched)

Description

We will use the example provided in Behat's quick start documentation, which describes a feature of a product basket.
The classes implementing our basket are quite simple and reflect the rules defined for the feature:
® VAT is 20%

® Delivery for basket under £10 is £3
® Delivery for basket over £10 is £2

http://behat.org/
https://github.com/Vanare/behat-cucumber-formatter/pull/20
http://behat.org/en/latest/quick_start.html

features/bootstrap/Basket.php
<?php
/| features/bootstrap/Basket. php

final class Basket inplenents \Countable

{

private $shel f;
private $products;
private $productsPrice = 0.0;
public function __construct(Shelf $shelf)
{

$t hi s->shel f = $shel f;
}
public function addProduct ($product)
{

$t hi s- >products[] = $product;

$t hi s- >product sPrice += $thi s->shel f - >get Product Pri ce($product);
}
public function getTotal Price()
{

return $this->productsPrice

+ ($this->productsPrice * 0.2)
+ ($this->productsPrice > 10 ? 2.0 : 3.0);

}
public function count()
{

return count ($this->products);
}

}

features/bootstrap/Shelf.php
<?php
/| features/bootstrap/ Shel f.php

final class Shelf

{
private $priceMap = array();
public function setProductPrice($product, $price)
{
$t hi s->pri ceMap[$product] = $price;
}
public function getProductPrice($product)
{
return $this->priceMap[$product];
}
}

We aim to use Gherkin in Behat to describe our scenarios and have an executable specification.
Remember that we need to manage:

* features (declarative specifications, usually stored in .feature files)
® corresponding automation code glue

Besides that, you'll need to decide which workflow to use:: do we want to use Xray/Jira as the master for writing the declarative specification or do we want
to manage those in Git?

@ Learn more

Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview of the possible workflows.

Using Jira and Xray as master

This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).

The first step is to create a "Cucumber” Test (you can also use "Behat" as a valid test type, as long as it has been defined as a possible option for the Test
Type custom field).

The test is quite self-explanatory, which is the ultimate purpose of using this approach: given an existing item, add it to the basket and check the basket.

Calculator / CALC-4518

Buying a single product under £10

Test Details
Type: Cucumber Scenario Type Scenario
Scenario: Given there is a "Sith Lord Lightsaber", which costs £5

When I add the "Sith Lord Lightsaber" to the basket
Then I should have 1 product in the basket
And the overall basket price should be £9

ENITN NI

Press | ~ Ctrl |+ Space | toget step suggestions.

Autocomplete based on labels: Filter Labels ~

- [

After creating the Test in Jira and associating it with requirement(s), etc., you can export the specification of the test to a ".feature" file via the REST API, or
the Export to Cucumber Ul action from within the Test/Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice
can be used to ease this task.

https://docs.getxray.app/pages/viewpage.action?pageId=46887250

o Calculator / CALC-4518

Buying a single product under £10

Edit () Comment Assign | More Start Progress = Resolve Issue = Close Issue Admin ~

Details Log work
Type: B Test Agile Board Status: [oA}
Affects Version/s: None Rank to Top Resolution: Unr
Component/s: None Rank to Bottom Fix Version/s: Nor
Labels: 1.feature Attach files
Voters
Description Stop watching
Click to add description Watchers
Create sub-task
Test Details
Convert to sub-task
Type: Cucumber
Move
Scenario Type: Scenario Link
Scenario: Given ther¢ Clone 1tsaber”, which costs £5
When I add | gpels saber" to the basket
Then I shot the basket
And the ove¢ Delete Juld be £9
Trigger Jenkins job
Trigger Jenkins job an...
Pre-Conditions Reset TestRunStatus
This test is not associated with Pre-Corfilad LIl CRelT Tl
Export Test to XML

Export Test Runs to CSV

[SIS

The coverage and the test results can be tracked in the "requirement” side (e.g. user story).

— Calculator / CALC-6132

Product basket
#Edit | [JComment Assign More~ | StartProgress Resolve Issue = Close Issue | = Admin ~
Details
Type: [Story Status: B (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

Requrement siats: (TSN

Description

In order to buy products
As a customer
I need to be able to put interesting products into a basket

Rules:

= VAT is 20%
= Delivery for basket under £10 is £3
= Delivery for basket over £10 is £2

Test Coverage

Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest ion; i All i -
= Filter(s)
P Status Resolution 4 Key Summary
OPEN Unresolved CALC-4518 Buying a single product under £10
e OPEN Unresolved CALC-4519 Buying a single product over £10
(OPEN Unresolved CALC-4520 Buying two products over £10
OPEN Unresolved CALC-4523 Buying a product under £10

Show entries Columns v

Test Runs Test Status

0 [Pass
il FAIL

il

il

After being exported, the created .feature file will contain the references to the Test issue key(s) and the covered requirement issue key, besides the
scenario specification.

The following example shows a feature with 4 scenarios, which correspond to 4 Test issues in Xray.

features/1_CALC-6132.feature

@REQ CALC- 6132
Feature: Product basket
#'n order to buy products
As a customer
I need to be able to put interesting products into a basket

Rul es:

- VAT is 20%

- Delivery for basket under £10 is £3
- Delivery for basket over £10 is £2

HOHH R H R

@EST_CALC 4523 @CALC- 4592 @ALC- 5022 @L.feature @pto
Scenario Qutline: Buying a product under £10
Gven there is a "<product>", which costs £<price>
Wien | add the "<product>" to the basket
Then | should have 1 product in the basket
And the overall basket price should be £<total >

Exanpl es:
| product | price | total |
| pen | 5 | 9 I
| book | 4 | 7.8 |

@EST_CALC 4520 @CALC- 4592 @ALC-5022 @.feature
Scenario: Buying two products over £10
Gven there is a "Sith Lord Lightsaber", which costs £10
And there is a "Jedi Lightsaber”, which costs £5
Wien | add the "Sith Lord Lightsaber” to the basket
And | add the "Jedi Lightsaber" to the basket
Then | should have 2 products in the basket
And the overall basket price should be £20

@EST_CALC- 4519 @CALC- 4592 @ALC-5022 @l.feature
Scenario: Buying a single product over £10
Gven there is a "Sith Lord Lightsaber”, which costs £15
Wien | add the "Sith Lord Lightsaber" to the basket
Then | should have 1 product in the basket
And the overall basket price should be £19

@EST_CALC- 4518 @CALC- 4592 @CALC-5022 @l.feature

Scenari o: Buying a single product under £10
Gven there is a "Sith Lord Lightsaber”, which costs £5
Wien | add the "Sith Lord Lightsaber" to the basket
Then | should have 1 product in the basket
And the overall basket price should be £9

The automation glue (i.e. the code corresponding to each one of these sentences - our step definitions) lives outside Jira and resides typically in some
version control system, such as Git.

In this case, it is stored in a file name f eat ur es/ boot st r ap/ Feat ur eCont ext . php.

features/bootstrap/FeatureContext.php

<?php

/| features/bootstrap/ FeatureContext.php

use Behat\ Behat\ Test er\ Except i on\ Pendi ngExcepti on;
use Behat\ Behat\ Cont ext\ Sni ppet Accept i ngCont ext ;
use Behat\ Gher ki n\ Node\ PySt ri ngNode;

use Behat\ Gher ki n\ Node\ Tabl eNode;

use PHPUNni t\ Fr anewor k\ Assert ;

cl ass FeatureContext inplenments SnippetAcceptingCont ext

{
private $shel f;
private $basket;
public function __construct()
{
$t hi s->shel f = new Shel f();
$t hi s- >basket = new Basket ($t hi s->shel f);
}
/*-k
* @5 ven there is a :product, which costs £:price
*/
public function therel sAWhi chCost sPs($product, $price)
{
$t hi s- >shel f->set Product Pri ce($product, floatval ($price));
}
/*-k
* @When | add the :product to the basket
*/
public function i AddTheToTheBasket ($product)
{
$t hi s- >basket - >addPr oduct ($pr oduct) ;
}
/*-k
* @hen | should have :count product(s) in the basket
*/
public function i Shoul dHaveProduct | nTheBasket ($count)
{
Assert::assert Count (
i ntval ($count),
$t hi s- >basket
)
}
/**
* @hen the overall basket price should be £:price
*/
public function theOverall Basket Pri ceShoul dBePs($pri ce)
{
Assert::assert Sane(
floatval ($price),
$t hi s- >basket - >get Tot al Pri ce()
)
}
}

After running the tests and generating the "Cucumber" compatible JSON report (e.g., report.json), it can be imported to Xray via the REST API, or the Imp
ort Execution Results action within the Test Execution, or by using one of the available Cl plugins.

https://docs.getxray.app/download/attachments/62262996/report.json?version=1&modificationDate=1592935967423&api=v2

vendor/ bi n/ behat -f cucunber_json
curl -H "Content-Type: application/json" -X POST -u admin:adnmn --data @reports/report.json"” http://jiraserver.
exanpl e. confrest/raven/ 1. 0/i nport/execution/ cucunber

= Calculator / CALC-5152

Execution results [1572251627992]

Edit || () Comment | Assign More ~ | Closelssue Reopenlssue | Admin~

Details
Type: I3 Test Execution Status: (View Workflow)
Affects Version/s: None Resolution: Fixed
Component/s: None Fix Version/s: None
Labels: None
Test Environments: None
Test Plan: None
Description

Execution results imported from external source

Tests

+ Add ~

Overall Execution Status

8 PASS 1 FAIL

TOTAL TESTS: 9

= Filter(s)
Apply Rank Show entries Columns +
Rank Key Summary Test Type #Req #Def Assignee 4 status

(=] 1 CALC-4823 Perform a google search Cucumber 1 0 Administrator [FAaL | »
e 2 CALC-4824 Initialise user agent Cucumber 1 0 Administrator [pass | >
(=] 3 CALC-4825 Launch the challenge Cucumber 1 0 Administrator [pass | »
3] 4 CALC-4826 Complete step 1 Cucumber 1 0 Administrator [Pass | »
e 5 CALC-4827 Complete step 2 Cucumber 1 0 Administrator [pass | >
(=] 6 CALC-4828 Complete step 3 Cucumber 1 0 Administrator [pass | »

The execution screen details will provide information on the test run result that includes step-level information including duration.

Note that the following test has a bug on purpose; in this case, the bug is not in the implementation but on the actual specification of the scenario.

Calculator / Test Execution: CALC-6131 / Test: CALC-4519

. . Import Execution Results Export to Cucumber _a Retum to Test Execution 4 Previous Next »
Buying a single product over £10 .
Test Description v
Test Issue Links (1) -
tests [) CALC-6132 Product basket N oPEN
Test Details ~
Test Type: Cucumber
Scenario Type Scenario
Scenario: 1 Given there is a "Sith Lord Lightsaber", which costs £15
2 When I add the "Sith Lord Lightsaber” to the basket
3 Then I should have 1 product in the basket
4 And the overall basket price should be £19
Results -
Context Duration Status
v - 1000ms
Steps.
Given there is a "Sith Lord Lightsaber”, which costs £15 B PAass]
When | add the "Sith Lord Lightsaber” to the basket - S
Then | should have 1 product in the basket - “
And the overall basket price should be £19 1.000 ms, FAIL

Failed asserting that 20.0 is identical to 19.0.

As shown above, detailed error messages can be tracked per each step.

On the “requirement”/user story side (i.e the “feature”) we can also see how this result impacts the coverage;

because the latest result for the test "Buying a single product over 10" is FAIL.

Calculator / CALC-6132

Product basket

Edit () Comment Assign | More ~ Start Progress = Resolve Issue

Details
Type: @ Story
Priority: A Major
Affects Version/s: None
Components: None
Labels: None

Requirement stae: (LS

Description

In order to buy
As a customer

products

I need to be able to put interesting products into a basket

Rules:

= VAT is 20%

« Delivery
= Delivery

Test Coverage

for basket under £10 is £3
for basket over £10 is £2

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Close Issue Admin ~

Status:
Resolution:
Fix Version/s:

Scope: Version; Version: None - latest execution; Environment: All Environments v

= Filter(s)
P Status Resolution * Key
@ OPEN Unresolved CALC-4518
I OPEN Unresolved CALC-4519
OPEN Unresolved CALC-4520
\ OPEN Unresolved CALC-4523

Summary
Buying a single product under £10
Buying a single product over £10
Buying two products over £10

Buying a product under £10

D (View Workflow)
Unresolved
None

Create Test Create Sub-Test Execution

Show

Test Runs

Eil

10 ¢ | entries Columns v

Test Status

in this case, the story/feature is "NOK"

If we wanted to correct the previous error, in this case, we would need to correct the last Gherkin step of the failing scenario and run the tests again.

Calculator / Test Execution: CALC-6135 / Test: CALC-4519

. . q Import Execution Results Export to Cucumber A Retumn to Test Execution 4 Previous Next »
Buying a single product over £10
Test Description ~
None
Test Issue Links (1) N
tests CALC-6132 Product basket 2 OPEN
Test Details ~
Test Type: Cucumber
Scenario Type: Scenario
Scenario: 1 Given there is a "Sith Lord Lightsaber”, which costs £15
2 When I add the "Sith Lord Lightsaber" to the basket
3 Then I should have 1 product in the basket
4 And the overall basket price should be £20
Results ~
Duration Status

Context

Steps
Given there is a "Sith Lord Lightsaber”, which costs £15
When | add the "Sith Lord Lightsaber” to the basket
Then | should have 1 product in the basket

And the overall basket price should be £20

Using Git or other VCS as master
You can edit your .feature and .meta files outside of Jira by storing them in your VCS using Git, for example.
In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility over them and report results against them.

Thus, you need to import your .feature files to Xray/Jira; you can invoke the REST API directly or use one of the available plugins/tutorials for CI tools.

cd features

rmfeatures. zip

zip -R features.zip -i *.feature

curl -H "Content-Type: nultipart/formdata” -u admn:adnmin -F "file=@eatures.zip" "http://jiraserver.exanple.
com rest/raven/ 1. 0/i nport/feature?project Key=CALC"

@ Please note

Each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again then Xray can
update the existent Test and don't create any duplicated tests.

Afterward, you can export those features out of Jira based on some criteria, so they are properly tagged, run them and import back the results to the correct
entities in Xray (as shown in the first scenario above).

References

https://behat.org

http://behat.org/en/latest/quick_start.html
https://github.com/Vanare/behat-cucumber-formatter

Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
https://github.com/bitcoder/cucumber-json-merge

Automated Tests (Import/Export)

https://behat.org/
http://behat.org/en/latest/quick_start.html
https://github.com/Vanare/behat-cucumber-formatter
https://docs.getxray.app/pages/viewpage.action?pageId=46887250
https://github.com/bitcoder/cucumber-json-merge
https://docs.getxray.app/pages/viewpage.action?pageId=46884768

® Exporting Cucumber Tests - REST

https://docs.getxray.app/display/XRAY360/Exporting+Cucumber+Tests+-+REST

	Testing using Behat in PHP

