Performance and load testing with JMeter

® QOverview

© JMeter concepts

® Mapping of concepts to Xray
® Test
® Test status
® Other relevant performance test results

® Requirements

® Description

© JPetStore example

= Setup: checking out the JMeter project and setup of auxiliary variables
® Configuring the Build steps
® Configuring the Post-build actions

© JPetStore with assertions example
® Room for improvement

® References

Overview

JMeter is an open-source tool used for performance and load testing.

Normally used to measure web site performance, it can be also used in broader contexts.

Native features provide a reasonable set of samplers and reports; however, this may be extended using plugins.

JMeter does not provide, by default, a SLA/SLO mechanism. Basic SLAs may be implemented using assertions (e.g. duration/response assertion or
custom assertion) though.

JMeter has a GUI but it can be run in command line mode using its CLI. It can produce JTL/CSV based reports or XML based reports; the latter provide

additional information.

JMeter concepts

The following table provides an overview of JMeter concepts; if you're used to it, you can probably skip it.

By having these concepts present, we may reflect on their mapping somehow to Xray.

JMeter concept

Test Plan
Thread Group
Controller

Sampler
(controller)

Logic (controller)

Transaction
(controlller)

Sample

(sampler)
Assertion

Listener

What it means?

a high-level testing scope, consisting of multiple "users"/threads doing multiple acctions
users
what drives the actions and flow of tests

request

a way to group and determine which samplers to run

one type of logic controller that provides a way to group multiple samplers and its samples (i.e. requests) in order to obtain an
additional sample based on them

obtained sample (i.e. the "response")

Assertions are used to perform additional checks on samplers, validating samples accordingly with a criteria, marking it as
successful or not.

test results/samples listener (e.g. for producing reports)

Mapping of concepts to Xray

JMeter is not a functional testing tool; it's essentialy a load tool simulating multiple users (threads), doing several actions as they would in a typical usage

scenario.

Mapping of concepts may no be straighforward thiugh.

If we aim to have visibility of the performance testing results, we need to think in the following questions:

® What can we consider the Test?

https://jmeter.apache.org/
https://jmeter-plugins.org/
https://jmeter.apache.org/usermanual/get-started.html#non_gui

® How can we assess if was successful or not?
® What information is relevant for analysis?

Test
The Test could be the whole JMeter's test plan; this is a valid and simple approach. It depends on how you use the test plan.

A Test could also represent each user/thread on that test plan; this would create tons of Tests that would be meaningless as they would not clearly identify
anything in particular and could not be reused whatsoever.

Another approach would be to use each sampler as a Test. However, samplers are normally grouped and nested under other controllers. Thus, a better
approach would be to represent all controllers (samplers and logic controllers) as Tests.

Test status
Determining whether a test was successful or not, first depends on what you define as being the "Test".

In this tutorial we'll consider each controller as a Test in Xray. Classifying it as failed or not can be done based on the nested assertion results or simply on
the implicit sampler' (un)successful classification.

Other relevant performance test results
As part of performance testing, the following metrics are common:

errors (count, %)

total elapsed time (e.g average, min, max, std dev, 90th percentile)
latency time/TTFB (e.g average, min, max

connect time (e.g average, min, max)

requests throughput/requests per time unit (e.g. average)

received bytes (total, throughput)

sent bytes (total, throughput)

requests (count)

Some of these may be considered as KPIs and used to define SLA/SLOs. JMeter does not provide a way to implement SLAs though.

SLAs are usually marked as being successful/met, warning or as failed/unmet.

Requirements

* JMeter
* JMeter Plugins Manager and some plugins (jmeter-http, jpgc-httpraw, jpgc-graphs-basic, jpgc-graphs-additional, jpgc-synthesis, jpgc-cmd)
® Jenkins (optional)

Description

The overall approach to have visibility of the performance results in Xray will be as follows:

1. run JMeter in command line
2. generate results in JTL (CSV based) format
3. post-process results to
a. generate a JUnit XML report, mapping each controller as a Test
b. generate dashboard report, containing multiple reports/charts
c. produce aggregate report or similar (e.g. synthesis report) in CSV
d. produce one or more charts
4. submit results to Xray along with the previously generated report assets
a. fill out the "Description” field of the corresponding created Test Execution issue with
i. link to project/job in Jenkins
ii. link to dashboard HTML report in Jenkins workspace
iii. aggregate report content formatted as a table

JPetStore example

In this example, we're load testing a fictitious pet store site name JPetStore (this site is kindly provided by Octoperf for demo purposes).

https://petstore.octoperf.com/

c

& JPetStore

Saltwater, Freshwater
Various Breeds

Various Breeds, Exotic Varieties
Reptiles

Liz‘ards, Turtles, Snakes
Birds

Exotic Varieties

The testing scenario exercises 20 users, with a ramp-up period of 240s, doing a standard user path/scenario: go to the site, login, view a category, then a

@& petstore.octoperf.com/actions/Catalog.action

1 Signin?

Fish | Dogs | Reptiles | Cats | Birds

product, add to cart, buy it and logout.

HTac"
v A JMeter Demo
v {8 Jpetstore
>& DNS Cache Manager
HTTP Cookie Manager
& HTTP Cache Manager
& HTTP Authorization Manager
~ Bl Home page
» A homepage
~ Bl Login page
» #" signinForm
v Bl signin
» / viewCatalog
» /" signinAccount
~ Bl ViewCategory
» A viewCategory
v Bl ViewProduct
» # viewProduct
~ Bl AddToCart
» /* additemToCart
» /" newOrderForm
etBillinglnfo
» 7 confirmOrder
> Bl Logoft
uf View Results Tree
of iP@gc - Synthesis Report (filtered)
«f Summary Report

» @ @ L

Thread Group

Name JPetstore

Comments:

Action to be taken after a Sampler error

*) Continue Start Next Thread Loop Stop Thread Stop Test

Thread Properties

Number of Threads (users):
Ramp-up period (seconds):
Loop Count: V| Infinite
v| Same user on each iteration

Delay Thread creation until needed
V| Specify Thread lifetime

Duration (seconds)

Startup delay (seconds)

00:04:00

Stop Test Now

A 0

—

020 @

There are several transactions, grouping one or more HTTP requests (i.e. using the HTTP Request sampler).

However, there are no explicit assertions; thus, all failures (i.e. samples marked as being unsuccessful) will be based on the standard HTTP response

codes.

Tests can be run using JMeter GUI or using the command line j et er, which is the preferred approach if you wish to make it part of your CI.

We'll use Jenkins as our Cl tool and we'll configure a freestyle project for running our tests.

Setup: checking out the JMeter project and setup of auxiliary variables

P

We need to setup some variables related to the Jira instance to be able to attach some files to the Test Execution issue later on, if we want to, using the at
tach_files_to_issue. sh shell script.

These are somehow redundant with the Xray instance configuration but are necessary if we wish to expose them.

We start by defining one variable for the Jira server base URL as build pararamter.

https://docs.getxray.app/download/attachments/62269876/jpetstore_configurable_host.jmx?version=16&modificationDate=1700616767318&api=v2

w This project is parameterized

String Parameter E ®
Name JIRA_BASEURL L2
Default Value http://192.168.56.102 ®
Description ®
Vz
[Plain text] Preview
» Trim the string ®

Using the Credentials Binding plugin, we will populate two variables for the Jira instance's username and password; these will be, in turn, obtained from
the credentials already stored and linked to the Xray instance configuration in Jenkins.

Bindings

Username and password (separated)

Username Variable = jjRA_ USERNAME

Password Variable jjRA_PASSWORD

® ® @

Credentials + Specific credentials ., Parameter expression
admin/****** (Jira admin user) 4 e=Add v

Add ¥

Abort the build if it's stuck

Add timestamps to the Console Output

Inject environment variables to the build process ®
Inject passwords to the build as environment variables

With Ant ®

The "code" will be checked out from our source code versioning system (e.g. Git), which contain the JMeter project(s) saved in .jmx format along with
some additional scripts.

Jenkins jmeter-petstore-octoperf

enere Source Code Management B igge Build E ne Builc Po: jild A

Source Code Management

None
® Git
Repositories P
Repository URL he//gi N o.git ®
Credentials gityeeee ™

Advanced...

Add Repository

Configuring the Build steps

The "build" is composed of several steps, starting with the one that runs JMeter.

https://support.cloudbees.com/hc/en-us/articles/203802500-Injecting-Secrets-into-Jenkins-Build-Jobs

Build

Execute shell

Command ./run_petstore octoperf.sh

See the list of available environment variables

Jrun_petstore_octoperf.sh

#!'/ bi n/ bash
JMETERPLUG NSCVD=JMet er Pl ugi nsCVD. sh
./ cl eanup. sh

run jnmeter and produce a JTL csv report
jmeter -n -t exanples/jpetstore/jpetstore_configurable_host.jmx -1 results.jtl -e -o dashboard

process JTL and covert it to a synthesis report as CSV

$IMETERPLUG NSCMD - - generate-csv synthesis_results.csv --input-jtl results.jtl --plugin-type SynthesisReport
$IMETERPLUG NSCMD --tool Reporter --generate-csv reports/aggregate_results.csv --input-jtl results.jtl --plugin-
type Aggregat eReport

$IMETERPLUG NSCMD - - gener at e- png reports/ ResponseTi mesOver Tine. png --input-jtl results.jtl --plugin-type
ResponseTi nesOver Tine --w dth 800 --hei ght 600
$IMETERPLUG NSCMD - - gener at e- png reports/ Transacti onsPer Second. png --input-jtl results.jtl --plugin-type
Transacti onsPer Second --wi dth 800 --hei ght 600

./convert.sh "jneter.jpetstore"

We need to process the JTL file and produce a report that can be submited to Xray; we'll use a JUnit XML based report that will be generated using a
specific tool.

@ About JMeter to JUnit XML converts

There are several JMeter JTL to JUnit XML converters out there. However, most of them do neither a implement a mapping of concepts that is
useful nor provide additional information about the failures.

This tutorial uses a modified version (pre-built JAR) of the the jmeter-junit-xml-converter code.
It will produce a JUnit XML report containing:

® one Test Suite per each Thread

= multiple <testcase> elements, one per each controller

® add information about the duration (i.e "time" attribute) on each <testcase>
® add failure message, if available

https://github.com/bitcoder/jmeter-junit-xml-report/tree/master/jmeter-junit-xml-converter
https://github.com/bitcoder/jmeter-junit-xml-report/
https://docs.getxray.app/download/attachments/62269876/jmeter-junit-xml-converter-0.0.1-SNAPSHOT-jar-with-dependencies.jar?version=16&modificationDate=1700616731525&api=v2
https://github.com/netudima/jmeter-junit-xml-report

The modified j net er-j uni t - xm - convert er utility will produce a junit.xml and an alternate_junit.xml file; we want the latter as it better suits our
needs. We'll call it using the convert er . sh shell script along with a parameter that will allow us to uniquely identify the Tests afterwards (e.g. "jmeter.
jpetstore"”).

Jconvert.sh

#!/ bi n/ bash

if [$#==11];

t hen

TESTSU TE=$1
el se

TESTSU TE="] neter"
fi

JAR=./converters/jmeter-junit-xmn-converter-0.0.1- SNAPSHOT-j ar - wi t h- dependenci es. j ar

java -jar $JAR results.jtl junit.xm $TESTSUI TE

Optionally, we'll add two build steps to store the tabular aggregate report in an environment variable (e.g. AGGREGATE_TABLE) as a string. This requires
the Environment Injector plugin.

Execute shell (%)

Command | #!/bin/bash

echo AGGREGATE_TABLE="$(./process_aggregate.sh)" > envvars.properties

See the list of available environment variables

Advanced...

Inject environment variables

Properties File Path ' enyvars properties

Properties Content @

process_aggregate.sh

#!/ bi n/ bash

cat reports/aggregate_results.csv [tr "," "|" | sed -e "s/?|/' | sed -e "s/$/|\\\\nm\\/' | sed -e "1 s/|/]|]|/Q

Configuring the Post-build actions

https://plugins.jenkins.io/envinject/

@ Bonus tip!

The Jenkins' Performance plugin can optionally be used to create some trend charts in Jenkins and also as means to mark the build as failed or
unstable depending on absolute or relative thresholds.

Publish Performance test result report

Source data fles (autodetects format): | results.tl
Regex for included samplers

Select evaluation mode Expert Mode @ Standard Mode

Standard Mode

Select mode: @ Relative Threshold ¢, Error Threshold
Use Error thresholds on single build: Unstable 4
Failed

Advanced.
Use Relative thresholds for build comparison: © “
Unstable % Range 10 10

Failed % Range 10 10

Compare with previous Build @ Compare with Build number | o

Compare based on Average Response Time %

Expert Mode

Constraint settings @ lgnore Failed Builds
@ lgnore Unstable Builds
Save constraint log to workspace

JUnit output file (optional)

Constraints. Adda new constraint

Test results can be submitted to Xray either by using a command line tool (e.g. cur |) or by using a specific Cl plugin which in our case will be the "Xray —
Test Management for Jira Plugin”.

We could choose the "JUnit XML" as the format in the "Xray: Results Import Task", that would be simpler to setup.

However, if we use the "JUnit XML multipart” format, we can further customize the Test Execution issue. We'll use this as means to provide a link to the

Jenkins build along with a link to dashboard report generated by JMeter. We may also provide the aggregate report table stored previously as an
environment variable.

Xray: Results Import Task

Jira Instance xray-vm

Format JUnit XML multipart

Parameters
Import to Same Test Execution

When this option is check, if you are importing multiple execution report files using a glob expression, the results will be
imported to the same Test Execution

Execution Report File (file path with file name) aiternate_junit.xmi

Test Execution fields JSON Content

{

“fields":

%
"summary": "JMeter performance results",
"description": "Build URL: ${BUILD_URL}.\n\nDetailed dashboard report at:

${JOB_URL}ws/dashboard/index.html\n\n*Aggregate results summary*\n\n ${AGGREGATE_TABLE}n",
"issuetype": {

": "Test Execution”

If using this format, you'll need to provide the Test Execution's issue type name (or the id) and the project key.

https://github.com/jenkinsci/xray-connector-plugin
https://github.com/jenkinsci/xray-connector-plugin
https://plugins.jenkins.io/performance/

Test Execution fields (JSON content) - examplel

{
"fields": {
"project": {
"key": "CALC'
o
"summary": "JMeter perfornmance results"”,

"description": "Build URL: ${BU LD URL}.\n\nDetail ed dashboard report at: ${JOB_URL}ws/dashboard/i ndex.
ht M\ n\ n* Aggregate results sumrary*\ n\n ${ AGGREGATE_TABLE}\ n",
"issuetype": {
"nanme": "Test Execution"

}

You may also specify the Test Plan, Revision and Test Environments fields but you'll need to obtain their custom field ID from Jira's administration. Note
that these IDs are specific to each Jira instance. In the following example, "customfield_10033" corresponds to the Revision CF, "customfield_11805" to
the Test Environments CF and "customfield_11807" to the Test Plan CF.

Test Execution fields (JSON content) - example2

{
"fields": {
"project": {
"key": "CALC'
o
"summary": "JMeter perfornmance results"”,

"description": "Build URL: ${BU LD URL}.\n\nDetail ed dashboard report at: ${JOB_URL}ws/dashboard/index.
ht M \ n\ n*Aggregate results summary*\ n\n ${ AGGREGATE _TABLE}\ n",
"issuetype": {
"nane": "Test Execution

b
"custonfield_10033": "123",

"custonfield_11805" : [
"stagi ng"
1
"custonfield_11807": [
" CALC- 1200"

@ Bonus tip!

You may also attach some files (e.g. charts, reports) to the created Test Execution issue.

The Jenkins plugin exports the XRAY_TEST_EXECS variable containing the issue key of the Test Execution that was created.

Post build task n
Tasks
= e
Log text

Operation | -- AND --%

Add
Script ISSUEKEY=$(echo $XRAY_TEST_EXECS | cut-d ";" -f 1) (2
echo "issue_key: $ISSUEKEY"
JJattach_files_to_issue.sh $ISSUEKEY reports/*.png dashboard.zip
Z
Run script only if all previous steps were successful 'if‘
Escalate script execution status to job status '@

Add another task

For the time being, the Jenkins plugin can't upload other files; however, we can make a basic shell script (e.g. att ach_fil es_to_i ssue. sh)
for that.

attach_files_to_issue.sh

#! [bi n/ bash

BASEURL=${ JI RA_BASEURL: - http://yourjiraserver.exanpl e. con}
USERNAME=${ J| RA_USERNAME: - admi n}
PASSWORD=${ JI RA_PASSWORD: - admni n}

| SSUEKEY=$1

for filein"${@2}"
do
curl -D -u $USERNAME: $PASSWORD - X POST -H " X- Atl assi an- Token: nocheck" -F "file=@file" $BASEURL/rest
[api / 2/i ssue/ $| SSUEKEY/ at t achnent s
done

After running Jenkins job, we may track some performance trend charts directly in the project's page. This requires previous configuration of the
Performance Plugin as mentioned earlier.

@ Jenkins

@ admin |Ilog out
Jenkins jmeter-petstore-octoperf

Back to Dashboard

Project jmeter-petstore-octoperf

, Status

= Changes Hadd description
B Workspace
£) Build Now Performance Trend

@© Delete Project : Bl s Response time

% Configure ==\ Last Successful Artitacts

_— dashBoard_results.xml
 Performance Trend

standardResults xml view T — =
= Rename =\ e
= Recent Changes ©
_— B}
Build History trend = Permalinks oz T 2
0% e = average — median
find « Lastbuild (#3), 3 hr 8 min ago . Percentage of errors
on « Last stable build (#3), 3 hr 8 min ago
« Last successful 3 hr 8 min ago o
e « Last completed buil .3 hr 8 min ago w!
on ®
»
SYRSS for all £ RSS for failures .
B ¥ 2

As we submitted the processed test results to Xray (alternate_junit.xml), we can now track them in Jira.

A Test Execution will be created containing a summary of results along with some useful links to access additional information in Jenkins.

(D Using the link provided in the description field of the Test Execution, we can access an extensive dashboard report generated by JMeter and
stored in Jenkins project's workspace.

In order to correctly view it, you may need to change one settings in Jenkins: go to Manage Jenkins > Script console and execute:

Syst em set Property("hudson. nodel . Di rect or yBr owser Support. CSP", "")

Finally, we should be able to correctly display the HTML based dashboard report.

Apache JMeter Dashboard

@ Dashbosra
st Chars « Test and Report information
Ll Customs Graphs. 3 Source fle resuts
Star Time 512620621 A"
End Time "5726/20 625 A"
Filter for display -
APDEX (Application Performance Index) Requests Summary
o
Aptex < Tiolrstontvesnold ¢ F(Frsmatentvesho Labet . o
oss7 so0ms. 156500 ms Total
0000 500ms 1 sec500ms confrmorder
o015 s00ms 1 secs00ms AddToCart
oses s00ms 1 sec500ms setBiinginto
ose0 so0ms 1se0 500 ms viewProduct
ose So0ms 1 sa0 500 ms Viowoategory
ose so0ms 1 sscs00ms addemToCant
o s00ms 1 sacs00ms viewGategory
o s00ms 1 sscs00ms Snin
099 s00ms 1 sec500ms sgnoft
0s96 s00ms 1 sec500ms newOrderform
0s86 s00ms 1 sec500ms Logoit
0ss6 s00ms 1580500 ms viewCGataiog
ose7 so0ms 1 se0 500 ms Home pags
osar so0ms 1 sac 500 ms homepage
1000 so0ms 1+ sac 500 ms signinaccount
1000 s00ms 1 sscs00ms Login page
1000 s00ms 1 sscs00ms
Apache JMeter Dashboard
@ Dashboard
v S Test and Report information
Over Time < File: “results.jtl"
Respanse Tmes Over Time Start Time: "5/26/20 621 AM"
Response Time Percentiles Over End Time: 5126120 6:25 AM
Time (successtl responses) Fierfor display:
Actve Threads O
Byt
Laenci
al Response Times Over Time
Comnect Time Over Time
Throughput
Response Times ol
i Customs Graphs 4 £
g
£ wo
g
H —
H
200021 wosnt) ez FTe) oz ot Zwosat o025

Elapsed Time (granularity: 1 min)

| additemTocart M AddToCart | confirmOrder [Homepage M homepage i Loginpage [l Logoff M newOrderform M setsillinginfo M ignin | signinAccount

signinform 1 signOff M viewCatalog K viewCategory | ViewCategory M viewProduct
W Viewproduct

https://docs.getxray.app/download/attachments/62269876/alternate_junit.xml?version=16&modificationDate=1700616738394&api=v2

Calculator / CALC-6540
JMeter performance results

Edit Q Comment Synchronize Tests from... More ¥ Close Issue Reopen Issue Admin v
v Details
Type: I3 Test Execution Status: (View Workflow)
Priority: 2 Major Resolution: Fixed
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

Test Environments: ~ None
Test Plan: None

v Description
Build URL: http://192.168.56.102:8081/job/jmeter-petstore-octoperf/3/.

Detailed dashboard report at: http://192.168.56.102:8081/job/ji petst perf/ lashboard/i html

Aggregate results summary

Label 1. Samples Average Median 90% Line 95% Line 99% Line Min Max Error % Throughput Received KB/sec Std. Dev.
homepage 145 129 122 131 142 231 111 710 0.00% 6 2 51.12
Home page 145 129 122 131 142 231 111 710 0.00% 6 2 51.12
signinForm 144 64 57 66 76 367 52 369 0.00% 6 2 38.48
Login page 145 63 57 65 76 367 0 369 0.00% 6 2 38.71
viewCatalog 269 66 55 61 66 105 50 2651 0.00% 11 4 168.26
signinAccount | 144 63 55 62 66 312 51 339 0.00% 6 2 37.54
Signin 144 138 m 122 190 397 103 2704 0.00% 6 5 218.82
viewCategory 141 70 55 63 69 321 50 1634 0.00% 6 .3 134.50
ViewCategory 144 69 55 63 69 321 [1634 0.00% 6 2 133.48
viewProduct 137 77 55 61 66 566 51 2221 0.00% 6 3 189.30
ViewProduct 141 74 55 61 66 566 0 2221 0.00% 6 2 187.03
addltemToCart 135 74 55 62 70 400 50 1598 0.00% 6 3 138.03
newOrderForm 133 67 54 60 63 408 50 1285 0.00% 6 2 110.36
setBillingInfo 130 84 55 63 7 547 51 2550 0.00% 6 2 223.43
confirmOrder 128 72 55 61 63 398 50 1681 100.00% .6 2 146.61
AddToCart 130 297 223 252 532 1949 164 2722 98.46% .6 1.0 331.96
signOff 125 69 55 62 66 297 51 1295 0.00% 6 2 112.87
LogOff 125 125 m 122 129 402 102 1348 0.00% 6 5 113.60
TOTAL 2605 94 57 127 220 408 [2722 9.83% | 10.9 5.4 161.88

Overall Execution Status

1 6 PASS 2 FAIL

Total Tests: 18

= Filter(s)

Show (100 ¢ entries Columns v

4 Rank Key Summary Test Type #Req #Def Assignee Status

(5] 1 CALC-6533 signinAccount Generic 0 0 Administrator [pass] >
e 2 CALC-6522 signOff Generic 0 0 Administrator [pass | » |
5] 3 CALC-6532 newOrderForm Generic 0 0 Administrator [eass] > -
(5] 3 CALC-6531 signinForm Generic 0 0 Administrator [pass] >
e 5 CALC-6530 viewProduct Generic 0 0 Administrator [pass] » |
5] 6 CALC-6529 confirmOrder Generic 0 0 Administrator > -
(5] 7 CALC-6539 viewCatalog Generic 0 0 Administrator [pass] >
e 8 CALC-6528 LogOff Generic 0 0 Administrator [pass] »
5] 9 CALC-6527 ViewProduct Generic 0 0 Administrator [eass] > -
(=] 10 CALC-6538 AddToCart Generic 0 0 Administrator >
e n CALC-6537 homepage Generic 0 0 Administrator [pass] » |
5] 12 CALC-6526 Login page Generic 0 0 Administrator [pass] >
5] 13 CALC-6525 Home page Generic 0 0 Administrator [pass] >
5] 14 CALC-6536 ViewCategory Generic 0 0 Administrator [pass] > -
=] 15 CALC-6535 additemToCart Generic 0 0 Administrator [pass] » | -
5] 16 CALC-6524 setBillinginfo Generic 0 0 Administrator [pass] >
5] 17 CALC-6523 Signin Generic 0 0 Administrator [pass] > |-
(5] 18 CALC-6534 viewCategory Generic 0 0 Administrator [pass] | >]

{D Unstructured (i.e. "generic) Test issues will be auto-provisioned (unless they already exist), one per each controller. The "Generic Definition”
field acts as the unique test identifier for subsequent imports and is composed by a prefix along with the controller's name (e.g. "jmeter.jpetstore.
AddToCart").

The attachments section on the Test Execution issue provide direct access to some reports and also to a zipped file containing the dashboard report
generated by JMeter.

v Attachments

@ Drop files to attach, or browse.

i g

dashboard.zip ResponseTimesOverTirr TransactionsPerSecond
Yesterday 1.05 MB Yesterday 87 kB Yesterday 103 kB

The execution details of a specific Test Run show multiple entries, each one representing a sample.

The following screenshot showcases the details of the sample produced by the Transaction Controller named "AddToCart". We can see that it was
executed multiple times, in the context of different "users" (i.e. JMeter's threads).

Calculator / Test Execution: CALC-6540 / Test: CALC-6538

| ExportTestasText - Return to Test Execution 4 Previous Next b
AddToCart
Execution Status [JJJ] FAIL Assignee: Administrator Versions: -
Executed By: - Administrator Revision: -
Started On: 26/May/20 6:25 AM () Finished On: 26/May/20 6:25 AM Tests -
environments:
Comment Preview Comment + Execution Defects (0) Create Defect Create Sub-Task Add Defects v Execution Evidence (0) Add Evidence v
e Execution Details
Test Description ~
None
Test Details ~
Test Type: Generic
Definition: jmeter.jpetstore. AddToCart
Results ~
Context Output Duration Status
TestSuite JPetstore 1-6 Nunber of samples in transaction : 4, number of failing samples : 1 219.000ms (D
TestSuite JPetstore 1-6 Number of samples in transaction : 4, number of failing samples : 1 sc0000ms (D
TestSuite JPetstore 1-6 Number of samples in transaction : 4, number of failing samples : 1 215.000ms (D
TestSuite JPetstore 1-6 Number of samples in transaction : 4, number of failing samples : 1 23000ms (D
TestSuite JPetstore 1-6 Number of samples in transaction : 4, number of failing samples : 1 219.000ms (D
TestSuite JPetstore 1-6 Number of samples in transaction : 4, number of failing samples : 1 2no0oms (IS
TestSuite JPetstore 1-6 Number of samples in transaction : 4, number of failing samples : 1 221000ms (D

JPetStore with assertions example

This example (JMeter project file) is similar to the previous one with the exception that it contains some assertions: one standard Size assertion and a
custom BeanShell assertion that looks at the duration and marks the sample as unsuccessful after "maxErrors" failures .

We'll use a set of variables defined at JMeter's test plan-level to assist in the assertion logic.

https://docs.getxray.app/download/attachments/62269876/jpetstore_octoperfsite_with_assertions.jmx?version=16&modificationDate=1700616709487&api=v2

BT & =2V B E b [- i 00:00:00 4k o0 0/0
v A JMeter Demo
\: User Defined Variables
'm' JPetstore Name: User Defined Variables
\{ DNS Cache Manager
\'{ HTTP Cookie Manager Comments:
) £ HTTP Cache Manager

HTTP Authorization Manager
- \ . Vall Di ipti
v B Home page 2me alue escription
SLA_elapsedTime_threshold

User Defined Variables

User Defined Variables

> # homepage
g Beeaial]l Assarim SLA_elapsedTime_failures
g. Size Assertion SLA_elapsedTime_maxErrors

4 n ogin page

" B ' 4] ek h 00:00:00

\J_I\ﬂeter Dem(,’ , BeanShell Assertion
. User Defined Variables
m JPetstore Name: BeanShell Assertion
‘\ X, DNS Cache Manager
\: HTTP Cookie Manager GRS
€ HTTP Cache Manager Reset bsh.Interpreter before each call
HTTP Authorization Manager
v n Home page
» 7" homepage Script file

Parameters (-> String Parameters and String [|bsh.args)

E_ BeanShell Assertion Script (see below for variables that are defined)
ﬂ_ Size Assertion
> u Login page
4 uS\gnin
4 u ViewCategory
> n ViewProduct
» Bl AddTocCart
> u LogOff
af View Results Tree
af ip@gc - Synthesis Report (filtered)
af Summary Report

FailureMessage = "SF: failureCount" + " requests failed to finish in " + threshold + " ms";

BeanShell assertion code

debug() ;

long el apsed = Sanpl eResul t.getTinme() ;

long threshold = Long. parseLong(vars. get ("SLA el apsedTi me_t hreshol d"));
if (elapsed > threshold) {

int failureCount = Integer.parselnt(vars.get("SLA el apsedTine_failures"));
fail ureCount ++;

int maxErrors = Integer. parselnt(vars. get("SLA el apsedTi ne_naxErrors"));

if (failureCount >= maxErrors) {
Failure = true;
Fail ureMessage = "SF: failureCount" + " requests failed to finishin " + threshold + " ns";
Sanpl eResul t. set Successful (fal se);
Sanpl eResul t. set ResponseMessage(failureCount + " requests failed to finishin " + threshold + " ns");
} else {

vars. put ("SLA el apsedTi ne_failures", String.valueO (failureCount));
I

Sanpl eResul t. set ResponseMessage("duration: "+el apsed+"; failureCount= "+failureCount);

After results are imported to Xray, we can see each sample result in the Test Run associated to the controller (i.e. HTTP Request sampler).

Calculator / Test Execution: CALC-6544 / Test: CALC-6537

a Export Test as Text . Return to Test Execution 4 Previous Next P
homepage
Execution Status [JJJ} FAIL Assignee: Administrator Versions: -
Executed By: Administrator Revision: -
Started On: 26/May/20 10:51 AM (@ Finished On: 26/May/20 10:51 AM Tests -
environments:
Comment Preview Comment A Execution Defects (0) Create Defect Create Sub-Task Add Defects A Execution Evidence (0) Add Evidence A

Click to add comment

e Execution Details

Test Description A~
None
Test Details A
Test Type: Generic
Definition: jmeter.jpetstore.nomepage
Results ~
Context output Duration Status
TestSuite JPetstore 1-6 | sr: sailurecount requests failed to finisn in 10 ms | nocooms (D
TestSuite JPetstore 1-6 SF: failureCount requests failed to finish in 10 ms nsoooms (D
TestSuite JPetstore 1-6 SF: failureCount requests failed to finish in 10 ms 122.000 ms. “

Room for improvement

abstract the whole JMeter test plan as a Test

use Robot Framework XML report instead of JUnit to provide more granular details
provide the possibility of linking test(s) to an existing requirement in Xray
implement SLAs on top of results

References

JMeter project

JMeter Plugins Manager

JMeter Plugins

JMeter entities

JMeter components reference

Credentials Binding plugin

Environment Injector plugin

Jenkins Performance plugin

Modified conversion utility "jmeter-junit-xml-report”
How to attach files to an issue in Jira

https://jmeter.apache.org/
https://jmeter-plugins.org/wiki/PluginsManager/
https://jmeter-plugins.org/
https://jmeter.apache.org/usermanual/test_plan.html
https://jmeter.apache.org/usermanual/component_reference.html
https://support.cloudbees.com/hc/en-us/articles/203802500-Injecting-Secrets-into-Jenkins-Build-Jobs
https://plugins.jenkins.io/envinject/
https://plugins.jenkins.io/performance/
https://github.com/bitcoder/jmeter-junit-xml-report/
https://confluence.atlassian.com/jirakb/how-to-add-an-attachment-to-a-jira-issue-using-rest-api-699957734.html

	Performance and load testing with JMeter

