
Performance and load testing with JMeter

Overview
JMeter concepts

Mapping of concepts to Xray
Test
Test status
Other relevant performance test results

Requirements
Description

JPetStore example
Setup: checking out the JMeter project and setup of auxiliary variables
Configuring the Build steps
Configuring the Post-build actions

JPetStore with assertions example
Room for improvement
References

Overview
JMeter is an open-source tool used for performance and load testing.

Normally used to measure web site performance, it can be also used in broader contexts.

Native features provide a reasonable set of samplers and reports; however, this may be extended using .plugins

JMeter does not provide, by default, a SLA/SLO mechanism. Basic SLAs may be implemented using assertions (e.g. duration/response assertion or
custom assertion) though.

JMeter has a GUI but it can be run in . It can produce JTL/CSV based reports or XML based reports; the latter provide command line mode using its CLI
additional information.

JMeter concepts

The following table provides an overview of JMeter concepts; if you're used to it, you can probably skip it.

By having these concepts present, we may reflect on their mapping somehow to Xray.

JMeter concept What it means?

Test Plan a high-level testing scope, consisting of multiple "users"/threads doing multiple acctions

Thread Group users

Controller what drives the actions and flow of tests

Sampler
(controller)

request

Logic (controller) a way to group and determine which samplers to run

Transaction
(controlller)

one type of logic controller that provides a way to group multiple samplers and its samples (i.e. requests) in order to obtain an
additional sample based on them

Sample obtained sample (i.e. the "response")

(sampler)
Assertion

Assertions are used to perform additional checks on samplers, validating samples accordingly with a criteria, marking it as
successful or not.

Listener test results/samples listener (e.g. for producing reports)

Mapping of concepts to Xray

JMeter is not a functional testing tool; it's essentialy a load tool simulating multiple users (threads), doing several actions as they would in a typical usage
scenario.

Mapping of concepts may no be straighforward thiugh.

If we aim to have visibility of the performance testing results, we need to think in the following questions:

What can we consider the Test?

https://jmeter.apache.org/
https://jmeter-plugins.org/
https://jmeter.apache.org/usermanual/get-started.html#non_gui

1.
2.
3.

a.
b.
c.
d.

4.
a.

i.
ii.
iii.

How can we assess if was successful or not?
What information is relevant for analysis?

Test

The Test could be the whole JMeter's test plan; this is a valid and simple approach. It depends on how you use the test plan.

A Test could also represent each user/thread on that test plan; this would create tons of Tests that would be meaningless as they would not clearly identify
anything in particular and could not be reused whatsoever.

Another approach would be to use each sampler as a Test. However, samplers are normally grouped and nested under other controllers. Thus, a better
approach would be to represent all controllers (samplers and logic controllers) as Tests.

Test status

Determining whether a test was successful or not, first depends on what you define as being the "Test".

In this tutorial we'll consider each controller as a Test in Xray. Classifying it as failed or not can be done based on the nested assertion results or simply on
the implicit sampler' (un)successful classification.

Other relevant performance test results

As part of performance testing, the following metrics are common:

errors (count, %)
total elapsed time (e.g average, min, max, std dev, 90th percentile)
latency time/TTFB (e.g average, min, max
connect time (e.g average, min, max)
requests throughput/requests per time unit (e.g. average)
received bytes (total, throughput)
sent bytes (total, throughput)
requests (count)

Some of these may be considered as KPIs and used to define SLA/SLOs. JMeter does not provide a way to implement SLAs though.

SLAs are usually marked as being successful/met, warning or as failed/unmet.

Requirements
JMeter
JMeter Plugins Manager and some plugins (jmeter-http, jpgc-httpraw, jpgc-graphs-basic, jpgc-graphs-additional, jpgc-synthesis, jpgc-cmd)
Jenkins (optional)

Description
The overall approach to have visibility of the performance results in Xray will be as follows:

run JMeter in command line
generate results in JTL (CSV based) format
post-process results to

generate a JUnit XML report, mapping each controller as a Test
generate dashboard report, containing multiple reports/charts
produce aggregate report or similar (e.g. synthesis report) in CSV
produce one or more charts

submit results to Xray along with the previously generated report assets
fill out the "Description" field of the corresponding created Test Execution issue with

link to project/job in Jenkins
link to dashboard HTML report in Jenkins workspace
aggregate report content formatted as a table

JPetStore example

In this example, we're load testing a fictitious pet store site name (this site is kindly provided by Octoperf for demo purposes).JPetStore

https://petstore.octoperf.com/

The exercises 20 users, with a ramp-up period of 240s, doing a standard user path/scenario: go to the site, login, view a category, then a testing scenario
product, add to cart, buy it and logout.

There are several transactions, grouping one or more HTTP requests (i.e. using the HTTP Request sampler).

However, there are no explicit assertions; thus, all failures (i.e. samples marked as being unsuccessful) will be based on the standard HTTP response
codes.

Tests can be run using JMeter GUI or using the command line , which is the preferred approach if you wish to make it part of your CI.jmeter

We'll use Jenkins as our CI tool and we'll configure a freestyle project for running our tests.

Setup: checking out the JMeter project and setup of auxiliary variables

We need to setup some variables related to the Jira instance to be able to attach some files to the Test Execution issue later on, if we want to, using the at
 shell script.tach_files_to_issue.sh

These are somehow redundant with the Xray instance configuration but are necessary if we wish to expose them.

We start by defining one variable for the Jira server base URL as build pararamter.

https://docs.getxray.app/download/attachments/62269876/jpetstore_configurable_host.jmx?version=16&modificationDate=1700616767318&api=v2

Using the , we will populate two variables for the Jira instance's username and password; these will be, in turn, obtained from Credentials Binding plugin
the credentials already stored and linked to the Xray instance configuration in Jenkins.

The "code" will be checked out from our source code versioning system (e.g. Git), which contain the JMeter project(s) saved in .jmx format along with
some additional scripts.

Configuring the Build steps

The "build" is composed of several steps, starting with the one that runs JMeter.

https://support.cloudbees.com/hc/en-us/articles/203802500-Injecting-Secrets-into-Jenkins-Build-Jobs

./run_petstore_octoperf.sh

#!/bin/bash

JMETERPLUGINSCMD=JMeterPluginsCMD.sh

./cleanup.sh

run jmeter and produce a JTL csv report
jmeter -n -t examples/jpetstore/jpetstore_configurable_host.jmx -l results.jtl -e -o dashboard

process JTL and covert it to a synthesis report as CSV
$JMETERPLUGINSCMD --generate-csv synthesis_results.csv --input-jtl results.jtl --plugin-type SynthesisReport
$JMETERPLUGINSCMD --tool Reporter --generate-csv reports/aggregate_results.csv --input-jtl results.jtl --plugin-
type AggregateReport

$JMETERPLUGINSCMD --generate-png reports/ResponseTimesOverTime.png --input-jtl results.jtl --plugin-type
ResponseTimesOverTime --width 800 --height 600
$JMETERPLUGINSCMD --generate-png reports/TransactionsPerSecond.png --input-jtl results.jtl --plugin-type
TransactionsPerSecond --width 800 --height 600

./convert.sh "jmeter.jpetstore"

We need to process the JTL file and produce a report that can be submited to Xray; we'll use a JUnit XML based report that will be generated using a
specific .tool

About JMeter to JUnit XML converts

There are several JMeter JTL to JUnit XML converters out there. However, most of them do neither a implement a mapping of concepts that is
useful nor provide additional information about the failures.

This tutorial uses a () of the the code.modified version pre-built JAR jmeter-junit-xml-converter

It will produce a JUnit XML report containing:

one Test Suite per each Thread
multiple <testcase> elements, one per each controller
add information about the duration (i.e "time" attribute) on each <testcase>

add failure message, if available

https://github.com/bitcoder/jmeter-junit-xml-report/tree/master/jmeter-junit-xml-converter
https://github.com/bitcoder/jmeter-junit-xml-report/
https://docs.getxray.app/download/attachments/62269876/jmeter-junit-xml-converter-0.0.1-SNAPSHOT-jar-with-dependencies.jar?version=16&modificationDate=1700616731525&api=v2
https://github.com/netudima/jmeter-junit-xml-report

The modified utility will produce a junit.xml and an alternate_junit.xml file; we want the latter as it better suits our jmeter-junit-xml-converter
needs. We'll call it using the shell script along with a parameter that will allow us to uniquely identify the Tests afterwards (e.g. "jmeter.converter.sh
jpetstore").

./convert.sh

#!/bin/bash

if [$# == 1];
then
 TESTSUITE=$1
else
 TESTSUITE="jmeter"
fi
JAR=./converters/jmeter-junit-xml-converter-0.0.1-SNAPSHOT-jar-with-dependencies.jar

java -jar $JAR results.jtl junit.xml $TESTSUITE

Optionally, we'll add two build steps to store the tabular aggregate report in an environment variable (e.g. AGGREGATE_TABLE) as a string. This requires
the .Environment Injector plugin

./process_aggregate.sh

#!/bin/bash

cat reports/aggregate_results.csv |tr "," "|" | sed -e 's/^/|/' | sed -e 's/$/|\\\\n\\/' | sed -e '1 s/|/||/g'

Configuring the Post-build actions

https://plugins.jenkins.io/envinject/

Test results can be submitted to Xray either by using a command line tool (e.g.) or by using a specific CI plugin which in our case will be the "curl Xray –
".Test Management for Jira Plugin

We could choose the "JUnit XML" as the format in the "Xray: Results Import Task", that would be simpler to setup.

However, if we use the "JUnit XML multipart" format, we can further customize the Test Execution issue. We'll use this as means to provide a link to the
Jenkins build along with a link to dashboard report generated by JMeter. We may also provide the aggregate report table stored previously as an
environment variable.

If using this format, you'll need to provide the Test Execution's issue type name (or the id) and the project key.

Bonus tip!

The Jenkins' can be used to create some trend charts in Jenkins and also as means to mark the build as failed or Performance plugin optionally
unstable depending on absolute or relative thresholds.

https://github.com/jenkinsci/xray-connector-plugin
https://github.com/jenkinsci/xray-connector-plugin
https://plugins.jenkins.io/performance/

Test Execution fields (JSON content) - example1

{
 "fields": {
 "project": {
 "key": "CALC"
 },
 "summary": "JMeter performance results",
 "description": "Build URL: ${BUILD_URL}.\n\nDetailed dashboard report at: ${JOB_URL}ws/dashboard/index.
html\n\n*Aggregate results summary*\n\n ${AGGREGATE_TABLE}\n",
 "issuetype": {
 "name": "Test Execution"
 }
 }
}

You may also specify the Test Plan, Revision and Test Environments fields but you'll need to obtain their custom field ID from Jira's administration. Note
that these IDs are specific to each Jira instance. In the following example, "customfield_10033" corresponds to the Revision CF, "customfield_11805" to
the Test Environments CF and "customfield_11807" to the Test Plan CF.

Test Execution fields (JSON content) - example2

{
 "fields": {
 "project": {
 "key": "CALC"
 },
 "summary": "JMeter performance results",
 "description": "Build URL: ${BUILD_URL}.\n\nDetailed dashboard report at: ${JOB_URL}ws/dashboard/index.
html\n\n*Aggregate results summary*\n\n ${AGGREGATE_TABLE}\n",
 "issuetype": {
 "name": "Test Execution"
 },
 "customfield_10033": "123",
 "customfield_11805" : [
 "staging"
],
 "customfield_11807": [
 "CALC-1200"
]

 }
}

After running Jenkins job, we may track some performance trend charts directly in the project's page. This requires previous configuration of the
Performance Plugin as mentioned earlier.

Bonus tip!

You may also attach some files (e.g. charts, reports) to the created Test Execution issue.

The Jenkins plugin exports the XRAY_TEST_EXECS variable containing the issue key of the Test Execution that was created.

For the time being, the Jenkins plugin can't upload other files; however, we can make a basic shell script (e.g.) attach_files_to_issue.sh
for that.

attach_files_to_issue.sh

#!/bin/bash

BASEURL=${JIRA_BASEURL:-http://yourjiraserver.example.com}
USERNAME=${JIRA_USERNAME:-admin}
PASSWORD=${JIRA_PASSWORD:-admin}

ISSUEKEY=$1

for file in "${@:2}"
do
 curl -D- -u $USERNAME:$PASSWORD -X POST -H "X-Atlassian-Token: nocheck" -F "file=@$file" $BASEURL/rest
/api/2/issue/$ISSUEKEY/attachments
done

As we submitted the processed test results to Xray (), we can now track them in Jira.alternate_junit.xml

A Test Execution will be created containing a summary of results along with some useful links to access additional information in Jenkins.

Using the link provided in the description field of the Test Execution, we can access an extensive dashboard report generated by JMeter and
stored in Jenkins project's workspace.

In order to correctly view it, you may need to change one settings in Jenkins: go to and execute:Manage Jenkins > Script console

System.setProperty("hudson.model.DirectoryBrowserSupport.CSP", "")

Finally, we should be able to correctly display the HTML based dashboard report.

https://docs.getxray.app/download/attachments/62269876/alternate_junit.xml?version=16&modificationDate=1700616738394&api=v2

The attachments section on the Test Execution issue provide direct access to some reports and also to a zipped file containing the dashboard report
generated by JMeter.

The execution details of a specific Test Run show multiple entries, each one representing a sample.

The following screenshot showcases the details of the sample produced by the Transaction Controller named "AddToCart". We can see that it was
executed multiple times, in the context of different "users" (i.e. JMeter's threads).

JPetStore with assertions example

This example () is similar to the previous one with the exception that it contains some assertions: one standard Size assertion and a JMeter project file
custom BeanShell assertion that looks at the duration and marks the sample as unsuccessful after "maxErrors" failures .

We'll use a set of variables defined at JMeter's test plan-level to assist in the assertion logic.

Unstructured (i.e. "generic) Test issues will be auto-provisioned (unless they already exist), one per each controller. The "Generic Definition"
field acts as the unique test identifier for subsequent imports and is composed by a prefix along with the controller's name (e.g. "jmeter.jpetstore.
AddToCart").

https://docs.getxray.app/download/attachments/62269876/jpetstore_octoperfsite_with_assertions.jmx?version=16&modificationDate=1700616709487&api=v2

BeanShell assertion code

debug();

long elapsed = SampleResult.getTime() ;

long threshold = Long.parseLong(vars.get("SLA_elapsedTime_threshold"));

if (elapsed > threshold) {

 int failureCount = Integer.parseInt(vars.get("SLA_elapsedTime_failures"));
 failureCount++;

 int maxErrors = Integer.parseInt(vars.get("SLA_elapsedTime_maxErrors"));

 if (failureCount >= maxErrors) {
 Failure = true;
 FailureMessage = "SF: failureCount" + " requests failed to finish in " + threshold + " ms";
 SampleResult.setSuccessful(false);
 SampleResult.setResponseMessage(failureCount + " requests failed to finish in " + threshold + " ms");
 } else {

 vars.put("SLA_elapsedTime_failures", String.valueOf(failureCount));
 };
 SampleResult.setResponseMessage("duration: "+elapsed+"; failureCount= "+failureCount);
}

After results are imported to Xray, we can see each sample result in the Test Run associated to the controller (i.e. HTTP Request sampler).

Room for improvement
abstract the whole JMeter test plan as a Test
use Robot Framework XML report instead of JUnit to provide more granular details
provide the possibility of linking test(s) to an existing requirement in Xray
implement SLAs on top of results

References

JMeter project
JMeter Plugins Manager
JMeter Plugins
JMeter entities
JMeter components reference
Credentials Binding plugin
Environment Injector plugin
Jenkins Performance plugin
Modified conversion utility "jmeter-junit-xml-report"
How to attach files to an issue in Jira

https://jmeter.apache.org/
https://jmeter-plugins.org/wiki/PluginsManager/
https://jmeter-plugins.org/
https://jmeter.apache.org/usermanual/test_plan.html
https://jmeter.apache.org/usermanual/component_reference.html
https://support.cloudbees.com/hc/en-us/articles/203802500-Injecting-Secrets-into-Jenkins-Build-Jobs
https://plugins.jenkins.io/envinject/
https://plugins.jenkins.io/performance/
https://github.com/bitcoder/jmeter-junit-xml-report/
https://confluence.atlassian.com/jirakb/how-to-add-an-attachment-to-a-jira-issue-using-rest-api-699957734.html

	Performance and load testing with JMeter

