Testing using SpecFlow and Cucumber Scenarios in C#

Overview

In this tutorial, we will create some tests in Cucumber/Gherkin, using SpecFlow and C# and we'll import the results to Xray to have visibility of the test
results.

@ Please note

There are some possible workflows related with Cucumber.

In this tutorial, we assume that the the tests (specification) are initially created in Jira as a Cucumber Tests and exported afterwards using the
Ul or the REST API; that's what we call the "standard" workflow.

If you prefer to manage the .feature and respective Scenarios outside of Jira, like in your own local dev environment/IDE or in Git/SVN, then
you'll need to synchronize the specification to Jira as depicted in our VCS based workflow.

More info in Testing in BDD with Gherkin based frameworks (e.g. Cucumber).

Requirements

® |nstall SpecFlow and the SpecFlow+ Runner 1.7.2 or newer along with the msbuild helper package; If you're using Visual Studio, just go to
NuGet's Console (Tools | NuGet Package Manager | Package Manager Console)
O Install-Package SpecRun.SpecFlow
© Install-Package SpecRun.SpecRun
© Install-Package SpecFlow.Tools.MsBuild.Generation

packages.config

<?xm version="1.0" encodi ng="utf-8"7?>
<packages>
<package i d="Newtonsoft.Json" version="9.0.1" targetFranework="net452" />
<package i d="SpecFl ow' version="2.3.2" targetFramework="net 452" />
<package i d="SpecFl ow. Tool s. MsBui | d. Generati on" version="2.3.2" targetFranmewor k="net 452" />
<package i d="SpecRun. Runner" version="1.7.2" targetFramework="net 452" />
<package i d="SpecRun. SpecFl ow' version="1.7.2" targetFranework="net452" />
<package i d="SpecRun. SpecFl ow. 2-3-0" version="1.7.2" targetFramewor k="net 452" />
<package id="System Val ueTupl e" version="4.3.0" targetFranework="net 452" />
</ packages>

® Use the Cucunber Json. csht m report template provided in this page

Description

In this tutorial, we detail more extensively the standard Cucumber workflow (more info in Testing in BDD with Gherkin based frameworks (e.g. Cucumber)),
where Xray/Jira is used as the master of information, i.e. the place where you edit/manage your Cucumber Scenarios.

An alternate approach would be using your IDE, or the feature files persisted in Git for example, as the master of information. In that case, the workflow is
a bit different as we'll mention ahead.

Using Xray and Jira to manage the Scenario specification

In this use case, Cucumber Tests are written in Jira using Xray of type "Scenario" or "Scenario Outline", in Jira.

https://docs.getxray.app/pages/viewpage.action?pageId=62273315
https://docs.getxray.app/pages/viewpage.action?pageId=62273315

6 Calculator / CALC-2248
add two numbers

& Edit () Comment Assign =~ More ~ Start Progress =~ Resolve Issue = Close Issue Admin ~
Details

Type: B Test Status: = (View Workflow)

Priority: L Trivial Resolution: Unresolved

Affects Version/s: None Fix Version/s: v3.0

Component/s: None

Labels: None
Description

Click to add description

Test Details
Type: Cucumber
Scenario Type: Scenario
Scenario: Given I have entered 50 into the calculator

And I have also entered 70 into the calculator
When I press add
Then the result should be 120 on the screen

A WN P

Calculator / CALC-2249
Add two positive numbers

Edit () Comment Assign | More ~ Start Progress = Resolve Issue = Close Issue Admin ~

Details
Type: @ Test Status: D (View Workflow)
Priority: L Trivial Resolution: Unresolved
Affects Version/s: None Fix Version/s: v3.0
Component/s: None
Labels: None
Description
Click to add description
Test Details
Type: Cucumber
Scenario Type: Scenario Outline
Scenario: 1 Given I have entered <input_1> into the calculator
2 And I have also entered <input_2> into the calculator
3 When I press <button>
4 Then the result should be <output> on the screen
5
6 Examples:
7 | input_1 | input_2 | button | output |
8 | 20 | 30 | add | 50 |
9 12 I'5 | add 17 |
10 [} | 40 | add | 40 |
1 1A I En 1 AAdA I A 1

é Calculator / CALC-2251
add two negative numbers

Edit () Comment Assign = More ~ Start Progress =~ Resolve Issue Close Issue Admin ~
Details
Type: B Test Status: D (View Workflow)
Priority: 4 Trivial Resolution: Unresolved
Affects Version/s: None Fix Version/s: v3.0
Component/s: None
Labels: None
Description
Click to add description
Test Details
Type: Cucumber
Scenario Type: Scenario Outline
Scenario: 1 Given I have entered <input_1> into the calculator
2 And I have also entered <input_2> into the calculator
3 When I press <button>
4 Then the result should be <output> on the screen
5
6 Examples:
7 | input_1 | input_2 | button | output |
8 I -1 | -2 | add | -3 |
9 1 I -1 | add | 10 |

You can export the specification of the tests to a Cucumber .feature file via the REST API or the Export to Cucumber Ul action from within the Test
Execution issue.

The created file will be similar to the following one.

1_CALC-889.feature

@ALC- 2250
@REQ _CALC- 2247

Feat ure:

Sum Qper ati on
#l'n order to avoid silly m stake

#

#As a math idiot

#

#1 want to be told the sumof two nunbers

@EST_CALC 2249

Scenario Qutline: Add two positive nunbers
Gven | have entered <input_1> into the cal cul ator
And | have also entered <input_2> into the cal cul ator
When | press <button>

Then the result should be <output> on the screen

Exanpl es:
input_1	input_2	button	output
20	30	add	50
2	5	add	7
O	40	add	40
4	50	add	54
5	50	add	55

@IEST_CALC- 2248

Scenario: add two nunbers
G ven | have entered 50 into the cal cul ator
And | have also entered 70 into the cal cul ator
Wien | press add
Then the result should be 120 on the screen

@EST_CALC 2251

Scenario Qutline: add two negative nunbers
Gven | have entered <input_1> into the cal cul ator
And | have al so entered <input_2> into the cal cul ator
When | press <button>
Then the result should be <output> on the screen

Exanpl es:

input_1	input_2	button	output
-1	-2	add	-3
1	-1	add	0

The actual step implementation code lives outside of Jira. Thus, you have to make the implementation for each step/sentence.

CalculatorSteps.cs

using System

usi ng TechTal k. SpecFl ow;

using M crosoft. Visual Studi o. Test Tool s. Uni t Testi ng;
usi ng UnitTestProjectl;

nanmespace UnitTestProjectl

{
[Bi ndi ng]
public class Cal cul at or St eps
{
private int result;
private Cal cul ator cal cul ator = new Cal cul ator();
[Gven(@| have entered (.*) into the calculator")]
public void G venl HaveEnt er edl nt oTheCal cul at or (i nt nurber)
{
cal cul ator. Fi rst Nunber = nunber;
}
[Gven(@] have also entered (.*) into the calculator")]
public void G venl HaveAl soEnt er edl nt oTheCal cul at or (i nt numrber)
{
cal cul at or. SecondNunber = nunber;
}
[When(@ 1 press add")]
public void Wenl PressAdd()
{
result = cal culator.Add();
}
[Then(@the result should be (.*) on the screen")]
public void ThenTheResul t Shoul dBeOnTheScreen(i nt expectedResul t)
{
Assert. AreEqual (expectedResult, result);
}
}
}

Before compiling and running the tests, you have to use a proper SpecFlow report template file in order to generate a valid Cucumber JSON report and
you have to configure the test profile to use it.

CucumberJson.cshtml

@nherits TechTal k. SpecRun. Fr amewor k. Repor ti ng. Cust onTenpl at eBase<Test RunResul t >
@sing System

@ising System Col | ections. Generic

@si ng System Linq

@sing System d obal i zation

@si ng Newtonsoft.Json

@si ng Newtonsoft.Json. Converters

@si ng TechTal k. SpecRun. Fr amewor k

@isi ng TechTal k. SpecRun. Franewor k. Resul t s

@si ng TechTal k. SpecRun. Fr anmewor k. Test Sui t eStructure
@si ng TechTal k. SpecRun. Framewor k. Tr aci ng

Q
var serializationSettings = new JsonSerializerSettings
{
Ref er enceLoopHandl i ng = Ref erenceLoopHandl i ng. | gnor e,
Converters = new List<JsonConverter>() { new StringEnunConverter(false) }
}

var features = Get Text Fi xtures()

.Sel ect (f => new
{
description = "",
el ements = (fromscenario in f.SubNodes
let |astExecutionResult = GetTestltenResult(scenario. CetTest Sequence().First()).
Last Executi onResul t ()
sel ect new

{

description =
id="",
keyword = "Scenario",
line = scenario. Source. SourceLine + 1,
namne scenario. Title,
tags = scenario. Tags.Select(t => new { nane =t, line = 11}),
steps = fromstep in | ast ExecutionResult.Result. TraceEvents
where | sRel evant (step) && (step. ResultType == Test NodeResul t Type. Succeeded
|| step.ResultType == Test NodeResul t Type. Failed || step.ResultType == Test NodeResul t Type. Pendi ng)
&& (step. Type == TraceEvent Type. Test || step. Type == TraceEvent Type. Test Act
|| step. Type == TraceEvent Type. Test Arrange || step.Type == TraceEvent Type. Test Assert)

l et keyword = step. StepBindinglnformation == null ? "" : step.
St epBi ndi ngl nf ormati on. St epl nstancel nformation == null ? "" : step. StepBi ndi ngl nfornmati on.
St epl nst ancel nf or mat i on. Keywor d

| et matchLocation = step. StepBindinglnformation == null ? "" : step.
St epBi ndi ngl nf or nat i on. Met hodNane

l et name = step. StepBindinglnformation == null ? "" : step.

St epBi ndi ngl nf or mat i on. Text

| et cucunber Status = step. Result Type == Test NodeResul t Type. Succeeded ?
"Passed" : step.ResultType. ToString()

sel ect new

{
keyword = keyword,
line = 0,
mat ch = new
{
| ocati on = matchLocation
H
name = nane,
result = new
{
duration = step.Duration. TotalMIIiseconds,
error_nessage = step. StackTrace,
status = cucunber St at us
}
H
type = "scenario"
}). ToList(),
id="",
keyword = "Feature",
line = f.Source. SourceLine + 1,
tags = f.Tags. Select(t => new { nane =t, line =11}),
nane = f.Title,
uri = f. Source. SourceFile

1)
}

@Raw(JsonConvert. Seriali zeObj ect (features, Formatting.|ndented, serializationSettings))

Default.srprofile

<?xm version="1.0" encodi ng="utf-8"?>
<TestProfile xm ns="http://ww. specfl ow. org/ schemas/ pl us/ Test Profile/1.5">
<Settings projectName="Unit Test Projectl1" projectld="{5359f4f c- ee65- 45b2- bb4e- 5c0255b88806}" />
<Execution stopAfterFailures="3" testThreadCount="1" testSchedul i ngvbde="Sequential" />
<l-- For collecting by a SpecRun server update and enable the followi ng el ement. For using the
collected statistics, set testSchedulinghMde="Adaptive" attribute on the <Execution> el enent.
<Server serverUrl="http://specrunserver:6365" publishResults="true" />
-->
<Test Assenbl yPat hs>
<Test Assenbl yPat h>Uni t Test Proj ect 1. dl | </ Test Assenbl yPat h>
</ Test Assenbl yPat hs>
<Depl oynent Tr ansf or mat i on>
<St eps>
<!-- sanple config transformto change the connection string-->
<!I--<ConfigFileTransformati on configFil e="App.config">
<Transformati on>
<! [CDATA[<?xm version="1.0" encodi ng="utf-8"?>
<configuration xm ns:xdt="http://schemas. nm crosoft.com
/ XML- Docunent - Tr ansf or ni' >
<connectionStrings>
<add name="MDat abase" connectionString="Data Source=.;Initial Catal og=MyDatabaseFor Testi ng;
I ntegrated Security=True"
xdt : Locat or =" Mat ch(nane)" xdt: Transform="Set Attri butes(connectionString)" />
</ connectionStrings>
</ configurati on>
11>
</ Transformati on>
</ Confi gFi | eTransformati on>-->
</ St eps>
</ Depl oynent Tr ansf or mat i on>

<Report >
<Tenpl at e name="CucunberJson. cshtm " out put Name="dat a. j son"/>
</ Report >

</ Test Profil e>

Tests can be run from within the IDE (e.g. Visual Studio) or by the command line; in the later case, make sure to specify the profile name and all the paths
properly.

Since there is code-behind file generation, it is required to have the NuGet "SpecFlow.Tools.MsBuild.Generation" package.

nsbui l d /t:C ean; Rebuil d
cd bi n\debug
.\..\. .\ packages\ SpecRun. Runner. 1. 7. 2\ t ool s\ SpecRun. exe run Default.srprofile /outputFolder:..\..\..
\Test Resul ts
cd ..\..

After running the tests and generating the Cucumber JSON report (e.g., data.json), it can be imported to Xray via the REST API or the Import Execution
Results action within the Test Execution.

curl -H "Content-Type: application/json" -X POST -u user:pass --data @data.json" http://jiraserver.exanpl e.com
/rest/raven/ 1. 0/i nport/execution/ cucunber

Since the original feature was extracted from a Test Execution, the results will be updated on it (this happens because the .feature file contains the Test
Execution's issue key as a tag).

https://docs.getxray.app/download/attachments/62275210/data.json?version=2&modificationDate=1602241514823&api=v2

@ Please note

If the .feature was created by hand directly on your IDE, or managed elsewhere outside of Jira, and it didn't contain the Test Execution's key,
then a brand new Test Execution would be created. This would also happen in case it was extracted using the REST API based on Test
/requirement issue keys.

Overall Execution Status

3 PASS

TOTAL TESTS: 3

FILTERS
Test Set Assignee Status Component Search
All v Al = N ~ || Contains text X Clear
= v Show 100 B entries Columns v
Key Summary Test Type #Req #Def Assignee Status
Add two
@) 1 CALC- positive Cucumber 1 0 Administrator [ZEEN P e
2249
numbers
CALC- add two
0 iistrator [ZE
-~ 2 2048 numbers Cucumber 1 0 Administrator >
add two
O 3 §§5L1C- negative Cucumber 1 0 Administrator [ZE B | e
numbers

The execution screen details will not only provide information on the overall test run result, but also of each of the examples provided in the Scenario
Outline and on the respective steps.

Calculator / Test Execution: CALC-2250 / Test: CALC-2249
Add two positive numbers

!] Import Execution Results Export to Cucumber 4. Return to Test Execution Next

2 And I have also entered <input_2> into the calculator
3 When I press <button>
4 Then the result should be <output> on the screen
5
6 Examples:
7 | input_1 | input_2 | button | output |
8 | 20 I 30 | add | 50 |
9 12 15 | add 17 |
10 10 | 40 | add | 40 |
11 | 4 | 50 | add | 54 |
12 I'5 I 50 | add I 55 |
Examples ~
<input_1> <input_2> <button> <output> Duration Status
v 20 30 add 50 0 millisec
Steps
Given | have entered 20 into the calculator 0 millisec
And | have also entered 30 into the calculator -
When | press add 0 millisec
Then the result should be 50 on the screen 0 millisec

Managing the Scenario specification in your IDE, in Git or in other VCS

In this case you are using your IDE as means to write/edit the Scenarios and eventually persist them in the VCS (e.g. Git, SVN, other) so they can be run
during Continuous Integration.

In this case, you'll need to regularly synchronize the specification to Jira as depicted in our VCS based workflow.

We also recommend that the .feature contains some auxiliary tags using the syntax i d: xxx in each Scenario/Scenario Outline, to better guarantee that
Scenarios are always mapped against the same Tests in Xray.

Before running the Scenarios, in order to produce a Cucumber JSON report that can be properly processed by Xray, we need to use the features extracted
from JIRA instead of the ones we edit, because they will contain:

® tags corresponding to Test issue keys
® tag corresponding to the related Test Execution key, in case we want to use an existing Test Execution as the criteria to select the Tests to be run
® tags corresponding to the related requirement(s)

@ Learn more

Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview on how to use Cucumber based Tests with Xray,
and the VCS based workflow for the later example.

References

® https://specflow.org/getting-started/

® https://specflow.org/plus/documentation/SpecFlowPlus-Runner-Command-Line/
® Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

® Exporting Cucumber Tests - REST

https://specflow.org/getting-started/
https://specflow.org/plus/documentation/SpecFlowPlus-Runner-Command-Line/
https://docs.getxray.app/pages/viewpage.action?pageId=62273315
https://docs.getxray.app/display/XRAY410/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/pages/viewpage.action?pageId=62273315

	Testing using SpecFlow and Cucumber Scenarios in C#

