
Integration with Jenkins

Overview
Release Notes
Installation

Manual Installation
Jenkins Native Installation (via web UI)

Configuration
Jira servers

Creating a new Project
Build Steps

Xray: Cucumber Features Export Task
Configuration

Xray: Cucumber Features Import Task
Xray: Results Import Task

Configuration
Additional fields

Xray: Build Enviroment Variables
Examples

Cucumber
Exporting Cucumber features
Importing Cucumber features
Importing the execution results
Importing the execution results with user-defined field values

JUnit
Importing the execution results

Pipeline projects support
Examples

JUnit
JUnit multipart
Cucumber ("standard" workflow)
Cucumber ("VCS/Git based" workflow)
Using parameters

Recommendations
Troubleshooting

The build process is failing with status code 403
The Jira xxx configuration of this tas was not found

Overview
Xray enables easy integration with Jenkins through the "Xray for JIRA Jenkins Plugin", providing the means for successful Continuous Integration by
allowing users to report automated testing results.

Release Notes

Xray for Jira Jenkins Plugin 2.3.1 Release Notes
Xray for JIRA Jenkins Plugin 2.2.0 Release Notes
Xray for JIRA Jenkins Plugin 2.1.2 Release Notes
Xray for JIRA Jenkins Plugin 1.0.0 Release Notes

https://docs.getxray.app/display/XRAY410/Xray+for+Jira+Jenkins+Plugin+2.3.1+Release+Notes
https://docs.getxray.app/display/XRAY410/Xray+for+JIRA+Jenkins+Plugin+2.2.0+Release+Notes
https://docs.getxray.app/display/XRAY410/Xray+for+JIRA+Jenkins+Plugin+2.1.2+Release+Notes
https://docs.getxray.app/display/XRAY410/Xray+for+JIRA+Jenkins+Plugin+1.0.0+Release+Notes

1.
2.
3.

1.
2.
3.
4.

a.
b.

Xray for JIRA Jenkins Plugin 1.1.0 Release Notes
Xray for JIRA Jenkins Plugin 1.2.0 Release Notes
Xray for JIRA Jenkins Plugin 1.2.1 Release Notes
Xray for JIRA Jenkins Plugin 1.3.0 Release Notes
Xray for JIRA Jenkins Plugin 2.0.0 Release Notes
Xray for JIRA Jenkins Plugin 2.1.1 Release Notes

Installation
The installation is made manually. For more information on how to install add-ons, please refer to .how to install add-ons

Manual Installation

If you have the actual file,xray-connector.hpi

Go to the Update Center of Jenkins in Manage Jenkins > Manage Plugins.
Select the advanced tab
In the Upload Plugin section, click upload and select the file file.xray-connector.hpi

Jenkins Native Installation (via web UI)

Since version 2.1.0, you can install the plugin by using the Jenkins native Web UI. You can read more about how to to it .here

Configuration
Xray for Jenkins is configured in the global settings configuration page > .Manage Jenkins Configure System > Xray for Jira configuration

Jira servers

The Jira servers configuration defines connections with Jira instances.

To add a new Jira instance connection, you need to specify some properties:

Configuration alias
Hosting: Hosting (instance type) in this case Server/Data Center.
Server Address: The address of the Jira Server where Xray is running
Credentials:

Use the to set the username/password (if you are using a Server/Data Center instance).Jenkins Credentials Plugin
Make sure that the user you are using have the following permissions in the projects where you want to import the results and import
/export feature files: View, Edit, Create.

note: the Configuration ID is not editable. This value can be used in the pipelines scripts.

Requirements

The Jenkins baseline for this app is v2.138.4 and it may not work properly with previous versions.

Download the latest version of the Jenkins Plugin

You may download the latest version of the Jenkins plugin from the latest .Release Notes

Please note

The user present in this configuration must exist in the JIRA instance and have permission to Create Test and Test Execution Issues

https://docs.getxray.app/display/XRAY410/Xray+for+JIRA+Jenkins+Plugin+1.1.0+Release+Notes
https://docs.getxray.app/display/XRAY410/Xray+for+JIRA+Jenkins+Plugin+1.2.0+Release+Notes
https://docs.getxray.app/display/XRAY410/Xray+for+JIRA+Jenkins+Plugin+1.2.1+Release+Notes
https://docs.getxray.app/display/XRAY410/Xray+for+JIRA+Jenkins+Plugin+1.3.0+Release+Notes
https://docs.getxray.app/display/XRAY410/Xray+for+JIRA+Jenkins+Plugin+2.0.0+Release+Notes
https://docs.getxray.app/display/XRAY410/Xray+for+JIRA+Jenkins+Plugin+2.1.1+Release+Notes
https://jenkins.io/doc/book/managing/plugins/
https://jenkins.io/doc/book/managing/plugins/#from-the-web-ui

Creating a new Project
The project is where the work that should be performed by Jenkins is configured.

For this app, you can configure:

Freestyle projects
Maven Projects
Multi-configuration Projects
Pipeline Projects

In the home page, clicking for example New Item > Freestyle project, provide a name, and then click OK.

Build Steps
Build steps are the building blocks of the build process. These need to be defined in the project configuration.

The app provides

one build step for exporting Cucumber Scenario/Scenario Outlines from Jira as .feature files
one build step for importing Cucumber Tests from existing Cucumber features into Jira.
one post-build action which publishes the execution results back to Jira, regardless of the build process status.

Xray: Cucumber Features Export Task

This build step will export the Cucumber Tests (i.e., Scenario/Scenario Outlines) in .feature or bundled in a .zip file. The rules for exporting are defined .here

It invokes Xray's Export Cucumber Tests REST API endpoint (see more information).here

Configuration

Some fields need to be configured in order to export the Cucumber Tests. As input, you can either specify issue keys (see the endpoint documention) here
or the ID of the saved filter in Jira.

field description

Jira
instan
ce

The Jira instance where Xray is running

Issue
keys

Set of issue keys separated by ";"

Filter
ID

A number that indicates the filter ID

File
path

The relative path of the directory where the features should be exported to; normally, this corresponds to the "features" folder of the Cucumber
project that has the implementation steps. Note: The directory will be created if it does not exist.

Xray: Cucumber Features Import Task

This build step will import existing cucumber Tests from existing Cucumber feature files into Xray issues. This Task will import from .feature files and also
from .zip files.

It invokes Xray's Import Cumcumber Tests REST API endpoint (see more information)here

field decription

JIRA instance The Jira instance where Xray is running.

Project Key This is the project where the Tests and Pre-Conditions will be created/updated.

Cucumber feature files
directory

This is the directory containing your feature files. All the files in this directory and sub directories will be imported. Supports
both and paths.relative absolute

Modified in the last hours By entering an integer n here, only files that where modified in the last n hours will be imported.
Leave empty if you do not want to use this parameter.

Xray: Results Import Task

The app provides easy access to Xray's Import Execution Results REST API endpoints (see more information). Therefore, it mimics the endpoints here
input parameters.

It supports importing results in Xray's own JSON format, Cucumber, Behave, JUnit, and NUnit, among others.

Using a glob expression, you can import multiple results files in the following formats:

JUnit
TestNG
NUnit
Robot framework

For those formats, the file path needs to be relative to the workspace.

Configuration

Please note

The fields of the tasks may take advantage of the Jenkins Environment variables, which can be used to populate fields such as the "Revision"
for specifying the source code's revision. For more information, please see .Jenkins set environment variables

https://docs.getxray.app/display/XRAY410/Export+Cucumber+Features
https://confluence.xpand-addons.com/display/XRAY/Exporting+Cucumber+Tests+-+REST
https://confluence.xpand-addons.com/display/XRAY/Exporting+Cucumber+Tests+-+REST
https://confluence.xpand-addons.com/display/XRAY/Importing+Cucumber+Tests+-+REST
https://confluence.xpand-addons.com/display/XRAY/Import+Execution+Results+-+REST
https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-belowJenkinsSetEnvironmentVariables

field description

Jira instance The Jira instance where Xray is running

Format A list of test result formats and its specific endpoint

Execution Report File The results relative or absolute file path

Note: glob expressions are supported for

JUnit
JUnit Multipart
TestNG
TestNG Multipart
NUnit
NUnit Multipart
Robot framework
Robot framework Multipart

Additional fields

Depending on the chose test result format and endpoint, some additional fields may need to be configured.

Format and specific
endpoint

Field Description

Behave JSON multipart

Cucumber JSON multipart

NUnit XML multipart

JUnit XML multipart

Robot XML multipart

TestNG XML multipart

Import to Same
Test Execution

When this option is check, if you are importing multiple execution report files using a glob expression,
the results will be imported to the same Test Execution

Test execution
fields

An object (JSON) specifying the fields for the issue. You may specify the object either directly in the
field or in the file path.

NUnit XML

JUnit XML

Robot XML

TestNG XML

Import to Same
Test Execution

When this option is check, if you are importing multiple execution report files using a glob expression,
the results will be imported to the same Test Execution

Project key Key of the project where the Test Execution (if the T est Execution Key field wasn't provided) and
the Tests (if they aren't created yet) are going to be created

Test execution
key

Key of the Test Execution

Test plan key Key of the Test Plan

Test
environments

List of Test Environments separated by ";"

Revision Source code's revision being target by the Test Execution

Fix version The Fix Version associated with the test execution (it supports only one value)

Xray: Build Enviroment Variables

Since version 2.2.0, the Xray plugin will now set some build enviroment variables according to the operation result after each of the Xray Steps mensioned
above.

Learn more

The custom field IDs can be obtained using the Jira REST API Browser tool included in
Jira. Each ID is of the form " ".customfield_ID

Another option, which does not require Jira administration rights, is to invoke the "Get edit
issue meta" in an existing issue (e.g., in a Test issue) as mentioned .here

Example: GET http://yourserver/rest/api/2/issue/CALC-1/editmeta

https://docs.atlassian.com/jira/REST/server/#api/2/issue-getEditIssueMeta

1.

Build
Enviroment
Variable Name

Meaning and Value

XRAY_IS_REQUES
T_SUCCESSFUL

Contains the string 'true' if all requests made by the step were sucesseful, or 'false' otherwise.

XRAY_ISSUES_MO
DIFIED

All Issue keys that were modified and/or created by the step, seperated by ';' with no duplicated entries (E.g. 'CALC-100;CALC-
101;CALC-102').

XRAY_RAW_RESP
ONSE

The unprocessed JSON response of all requests made by the step, seperated by ';'.

XRAY_TEST_EXECS All Test Execution Issue keys that were modified and/or created by the step, seperated by ';' with no duplicated entries (E.g.
'CALC-200;CALC-201;CALC-202').

Please note that in same cases, it will be not possible to determine the issue type of the Issue key returned in the request
response and in that case, the key it will only be added to the variable.XRAY_ISSUES_MODIFIED

XRAY_TEST All Test Issue keys that were modified and/or created by the step, seperated by ';' with no duplicated entries (E.g. 'CALC-300;
CALC-301;CALC-302').

Please note that in same cases, it will be not possible to determine the issue type of the Issue key returned in the request
response and in that case, the key it will only be added to the variable.XRAY_ISSUES_MODIFIED

Examples

Cucumber

In a typical , after having created a Cucumber project and the Cucumber tests specified in Jira, you may want to have a project that Cucumber Workflow ex
 the features from Jira, executes the automated tests on a CI environment and then back its results.ports imports

For this scenario, the Jenkins project would be configured with a set of tasks responsible for:

Pipeline Project Limitations

Due to Jenkins limitations, these variables will not be set on Pipeline projects.

http://confluence.xpand-addons.com/display/XRAY/Testing+with+Cucumber

1.
2.
3.
4.

Pulling the Cucumber project
Exporting Cucumber features from Jira to your Cucumber project
Executing the tests in the CI environment
Importing the execution results back to Jira

Exporting Cucumber features

To start the configuration, add the build step Xray: Cucumber Features Export Task.

After that, configure it.

In this example, we configured the task to extract the from a set of issues (PROJ-78 and PROJ-79) to the folder that holds the Cucumber project.features

Importing Cucumber features

To start the configuration, add the build step Xray: Cucumber Features Import Task.

After that, configure it.

In this example, we configured the task to import to the Project IF of the Xray instance all the .features and .zip files that are contained in \Cucumber
directory and sub directories, which were modified in the last 3 hours.

Importing the execution results

To start the configuration, add the post-build action . Xray: Results Import Task

After that, configure it.

In this example, we configured the task to import the results back to Jira.Cucumber JSON

Once all configurations are done, click Save at the bottom of the page.

After running the job, the expected result is a new Test Execution issue created in the Jira instance.

Importing the execution results with user-defined field values

For Cucumber, Behave, JUnit, Nunit and Robot, Xray for Jenkins allows you to create new Test Executions and have control over newly-created Test
Execution fields. You can send two files, the normal execution result file and a JSON file similar to the one Jira uses to create new issues. More details
regarding how Jira creates new issues . here

For this scenario and example, the import task needs to be configured with the format. When selecting this option, you can Cucumber JSON Multipart
additionally configure the in one of two ways:Test Execution fields

Insert the relative to the JSON file containing the information, orpath
Insert the directly in the field.JSON content

https://developer.atlassian.com/jiradev/jira-apis/about-the-jira-rest-apis/jira-rest-api-tutorials/jira-rest-api-example-create-issue

1.
2.
3.

In this example, we configured the following object:

{
 "fields": {
 "project": {
 "key": "PROJ"
 },
 "summary": "Test Execution for Cucumber results (Generated by job: ${BUILD_TAG})",
 "issuetype": {
 "id": "10102"
 }
 }
}

And configured the task to import the results back to Jira.Cucumber JSON Multipart

Once all configurations are done, click Save at the bottom of the page.

After running the job, the expected result is a new Test Execution issue created in the Jira instance, with the Test Execution fields as specified in the
Jenkins build step configuration.

JUnit

Apart from supporting Cucumber natively, Xray enables you to take advantage of many other testing frameworks like JUnit. In this sense, Xray for Jenkins
lets you import results in other formats besides Cucumber JSON.

If you want to import a typical Job outline would be:JUnit XML reports,

Pulling the JUnit project
Executing the tests in the CI environment
Importing the execution results, including Tests, to JIRA

Importing the execution results

To start the configuration, add the post-build action . Xray: Results Import Task

After that, configure it.

In this example, we have a configuration where the format is chosen.JUnit XML

After running the plan, the expected result is a new Test Execution issue created in the JIRA instance.

You can also import multiple results using a glob expression, like in the following example

Pipeline projects support
Xray for Jenkins provides support for pipelines projects, allowing you to use Xray specific tasks.

Here is a simple example of a pipeline script using the Xray: Cucumber Features Export Task

Jenkinsfile example (declarative)

pipeline {
 agent any
 stages {
 stage('Export Cucumber') {
 steps {
 step([$class: 'XrayExportBuilder', filePath: '\\features', issues: 'IF-1', serverInstance:
'2ffc3a3e-9e2f-4279-abcd-e9301fe47bed'])
 }
 }
 }
}

Examples

JUnit

This is a declarative example, for JUnit based tests.

Jenkinsfile example (declarative)

pipeline {
 agent any
 stages {
 stage('Compile'){
 steps {
 checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations:
false, extensions: [[$class: 'SparseCheckoutPaths', sparseCheckoutPaths: [[path: 'java-junit-calc/']]]],
submoduleCfg: [], userRemoteConfigs: [[credentialsId: 'a3285253-a867-4ea7-a843-da349fd36490', url:
'ssh://git@localhost/home/git/repos/automation-samples.git']]])
 sh "mvn clean compile -f java-junit-calc/pom.xml"
 }
 }

 stage('Test'){
 steps{
 sh "mvn test -f java-junit-calc/pom.xml"
 }
 }

 stage('Import results to Xray') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/junit', fixVersion: 'v3.0', importFilePath:
'java-junit-calc/target/surefire-reports/*.xml', importToSameExecution: 'true', projectKey: 'CALC',
serverInstance: '552d0cb6-6f8d-48ba-bbad-50e94f39b722'])
 }
 }
 }
}

Learn more

For Pipeline specific documentation, you may want to give a look at:

https://jenkins.io/doc/book/pipeline/
https://jenkins.io/doc/book/pipeline/syntax/#declarative-pipeline
https://github.com/jenkinsci/pipeline-plugin/blob/master/TUTORIAL.md

https://jenkins.io/doc/book/pipeline/
https://jenkins.io/doc/book/pipeline/syntax/#declarative-pipeline
https://github.com/jenkinsci/pipeline-plugin/blob/master/TUTORIAL.md

Jenkinsfile example (scripted)

node {
 stage('Compile'){

 checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations:
false, extensions: [[$class: 'SparseCheckoutPaths', sparseCheckoutPaths: [[path: 'java-junit-calc/']]]],
submoduleCfg: [], userRemoteConfigs: [[credentialsId: 'a3285253-a867-4ea7-a843-da349fd36490', url:
'ssh://git@localhost/home/git/repos/automation-samples.git']]])
 sh "mvn clean compile -f java-junit-calc/pom.xml"

 }

 stage('Test'){
 try {
 sh "mvn test -f java-junit-calc/pom.xml"
 } catch (ex) {
 echo 'Something failed'
 throw ex
 }
 }

 stage('Import results to Xray') {
 step([$class: 'XrayImportBuilder', endpointName: '/junit', fixVersion: 'v3.0', importFilePath:
'java-junit-calc/target/surefire-reports/*.xml', importToSameExecution: 'true', projectKey: 'CALC',
serverInstance: '552d0cb6-6f8d-48ba-bbad-50e94f39b722'])
 }
}

JUnit multipart

This is a declarative example, for JUnit based tests using the multipart variant/endpoint which allows customization over the Test Execution issue fields.

By changing the value of the variable, you can easily adapt it for other automation frameworks (e.g. Robot framework, TestNG, NUnit). endpointName

Jenkinsfile example (declarative)

pipeline {
 agent any
 stages {
 stage('Compile'){
 steps {
 checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations:
false, extensions: [[$class: 'SparseCheckoutPaths', sparseCheckoutPaths: [[path: 'java-junit-calc/']]]],
submoduleCfg: [], userRemoteConfigs: [[credentialsId: 'a3285253-a867-4ea7-a843-da349fd36490', url:
'ssh://git@localhost/home/git/repos/automation-samples.git']]])
 sh "mvn clean compile -f java-junit-calc/pom.xml"
 }
 }

 stage('Test'){
 steps{
 sh "mvn test -f java-junit-calc/pom.xml"
 }
 }

 stage('Import results to Xray') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/junit/multipart', importFilePath: 'java-
junit-calc/target/surefire-reports/TEST-com.xpand.java.CalcTest.xml', importInfo: '''{
 "fields": {
 "project": {
 "key": "CALC"
 },
 "summary": "Test Execution for java junit ${BUILD_NUMBER}",
 "issuetype": {
 "id": "9"
 },
 "customfield_11807": [
 "CALC-1200"
]
 }
 }''', inputInfoSwitcher: 'fileContent', serverInstance: '552d0cb6-6f8d-48ba-bbad-50e94f39b722'])
 }
 }

 }
}

Cucumber ("standard" workflow)

This is a declarative example, for Cucumber tests using the "standard" workflow (see).Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

https://docs.getxray.app/pages/viewpage.action?pageId=62273315

Jenkinsfile example (declarative)

pipeline {
 agent any
 stages {
 stage('Export features from Xray'){
 steps {
 checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations:
false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[credentialsId: 'a3285253-a867-4ea7-a843-
da349fd36490', url: 'ssh://git@localhost/home/git/repos/automation-samples.git']]])
 step([$class: 'XrayExportBuilder', filePath: 'cucumber_xray_tests/features', filter: '11400',
serverInstance: '552d0cb6-6f8d-48ba-bbad-50e94f39b722'])
 }
 }

 stage('Test'){
 steps{
 sh "cd cucumber_xray_tests && cucumber -x -f json -o data.json"
 }
 }

 stage('Import results to Xray') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/cucumber', importFilePath:
'cucumber_xray_tests/data.json', serverInstance: '552d0cb6-6f8d-48ba-bbad-50e94f39b722'])
 }
 }
 }
}

Cucumber ("VCS/Git based" workflow)

This is a declarative example, for Cucumber tests using the "VCS/Git based" workflow (see Testing in BDD with Gherkin based frameworks (e.g.
).Cucumber)

https://docs.getxray.app/pages/viewpage.action?pageId=62273315
https://docs.getxray.app/pages/viewpage.action?pageId=62273315

Jenkinsfile example (declarative)

pipeline {
 agent any
 stages {
 stage('Synch (update) recent tests to Xray'){
 steps {
 checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations:
false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[credentialsId: 'a3285253-a867-4ea7-a843-
da349fd36490', url: 'ssh://git@localhost/home/git/repos/automation-samples.git']]])
 step([$class: 'XrayImportFeatureBuilder', folderPath: 'cucumber_xray_tests/features',
lastModified: '10', projectKey: 'CALC', serverInstance: '552d0cb6-6f8d-48ba-bbad-50e94f39b722'])
 }
 }

 stage('Export features from Xray'){
 steps {
 checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations:
false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[credentialsId: 'a3285253-a867-4ea7-a843-
da349fd36490', url: 'ssh://git@localhost/home/git/repos/automation-samples.git']]])
 sh "rm -rf cucumber_xray_tests/features"
 step([$class: 'XrayExportBuilder', filePath: 'cucumber_xray_tests/features', filter: '11400',
serverInstance: '552d0cb6-6f8d-48ba-bbad-50e94f39b722'])
 }
 }

 stage('Test'){
 steps{
 sh "cd cucumber_xray_tests && cucumber -x -f json -o data.json"
 }
 }

 stage('Import results to Xray') {
 steps {
 step([$class: 'XrayImportBuilder', endpointName: '/cucumber', importFilePath:
'cucumber_xray_tests/data.json', serverInstance: '552d0cb6-6f8d-48ba-bbad-50e94f39b722'])
 }
 }
 }
}

Using parameters

You can ask for human input in your pipeline builds by passing parameters

Parameters usage

pipeline{
 agent any
 parameters {
 string(defaultValue: "NTP", description: '', name: 'projectKey')
 string(defaultValue: "Android", description: '', name: 'env')
 }
 stages {
 stage ('Import Results') {
 steps {
 step([$class: 'XrayImportBuilder',
 endpointName: '/junit',
 importFilePath: 'java-junit-calc/target/surefire-reports/*.xml',
 importToSameExecution: 'true',
 projectKey: params.projectKey,
 revision: params.projectKey + env.BUILD_NUMBER,
 serverInstance: '552d0cb6-6f8d-48ba-bbad-50e94f39b722',
 testEnvironments: params.env])
 }

 }
 }
}

Recommendations

You can automatically generate your step scripts using the Jenkins Snippet Generator.

This is the simplest way to generate your step script, and we strongly recommend the use of this snippet due to the complexity of some task related
parameters.

Troubleshooting

The build process is failing with status code 403

When you check the log, it has the following:

By default, when you s try to log into Jira with the wrong credentials, the Jira instance will prompt you to provide a CAPTCHA the next time you uccessively
try to log in. It is not possible to provide this information via the build process, so it will fail with status code .403 Forbidden

You will need to log into Jira via the browser and provide the CAPTCHA.

If you are a Jira administrator, you can go to Jira administration > User Management and reset the failed login.

The Jira xxx configuration of this tas was not found

If you obtain this error, probably you have migrated from an old version of this plugin. You need to open each project/job configuration and save it.

	Integration with Jenkins

