
Native Iterations
In this page, it's explained how to export a property when it has more than a single value such as:

Issue Activity
Issue History

Exportable Data
Issue Links

Exportable Data
Issue Comments
Issue Worklogs
Issue Sub-Tasks
Issue Components
Issue Status Transitions
Issue Attached Images
Issue Attachments
Issue Labels
Project Versions

The Document Generator also provides data filtering and sorting directly on the iteration definition. Read the following topics:

Iterating JQL Queries
Applying filters to Iterations
Iterating in the same line of the document
Iterating in the same cell in an Excel document
Iterating with the BREAK or CONTINUE statement
Iterating Parent Issues
Sorting iterations

Issue Activity

Changes to issues are registered in the Issue Activity, but it is not known in advance how many changes are going to be made. You can iterate a section
over all the activities of an issue. This allows you to create a table that dynamically grows according to the number of existing activities. The notation is:

Activity Fields Description

Title The title of the issue

Summary The summary of the activity

Content When an activity involves a change in the Issue contents, this field displays the new contents

Author The author of the activity

AuthorEmail The email of the author of the activity

Published The time the issue was published

Updated The time the issue was updated

Categories When an activity regards an Issue Status change, this field displays the new Issue Status

Expand to see the sample code

 #{for activityEntries}
 ${ActivityEntries[n].Title}
 ${ActivityEntries[n].Summary}
 ${ActivityEntries[n].Content}
 ${ActivityEntries[n].Author}
 ${ActivityEntries[n].AuthorEmail}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):ActivityEntries[n].Published}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):ActivityEntries[n].Updated}
 ${ActivityEntries[n].Categories}
#{end}

or

#{for <VariableName>=ActivityEntriesCount}
 Content and Issue Mappings. Example: ${ActivityEntries[VariableName].Field}
#{end}

Below are two examples of using the Activity iteration in a Word and Excel template:

blocked URL Iterating_Activity_Entries.docx

 blocked URL Iterating_Activity_Entries.xlsx

Issue History

You can iterate a section over all the history entries of an issue. This allows you to create a table that dynamically grows according to the number of
changes done.

Exportable Data

Field Description

HistoryEntriesCount Returns the number of changes made.

Author Returns the user who made the change.

Created Date of the change

ChangedItemsCout Returns the number of fields changed in the current change.

ChangedItem
Field Description

Field Returns the name of the field which the value was changed.

From Returns the old value.

To Returns the new value.

The notation is:

Expand to see the sample code

 #{for historyEntries}
 ${fullname:HistoryEntries[n].Author} made changes ${dateformat("dd-MM-yyyy HH:mm:ss"):HistoryEntries[n].
Created}
 #{for ch=HistoryEntries[n].ChangedItemsCount}
 Field Name: ${HistoryEntries[n].ChangedItems[ch].Field}
 Old Value: ${HistoryEntries[n].ChangedItems[ch].From}
 New Value: ${HistoryEntries[n].ChangedItems[ch].To}
 #{end}
#{end}

or

#{for h=HistoryEntriesCount}
 ${fullname:HistoryEntries[h].Author} made changes ${dateformat("dd-MM-yyyy HH:mm:ss"):HistoryEntries[h].
Created}
 #{for ch=HistoryEntries[h].ChangedItemsCount}
 Field Name: ${HistoryEntries[h].ChangedItems[ch].Field}
 Old Value: ${HistoryEntries[h].ChangedItems[ch].From}
 New Value: ${HistoryEntries[h].ChangedItems[ch].To}
 #{end}
#{end}

Issue Links

Because it is not known in advance how many linked issues exist for an issue, you can iterate a section over all the linked issues of an issue. This allows
you to create a table that dynamically grows according to the number of existing linked issues.

We suggest that you use the to render the data because almost all content is HTML, e.g., ${html:ActivityEntries[n].Title} html function

https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Activity_Entries.docx?version=13&modificationDate=1700621984019&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/excel.png?version=1&modificationDate=1605284307108&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Activity_Entries.xlsx?version=13&modificationDate=1700621984445&api=v2

Exportable Data

Field Description

 AppType Returns the Application Type. The values can be:

Application Value Description

JIRA Link from the same Jira Instance

External Jira Link from the another Jira Instance

Confluence Link from a Confluence page

External External link

 LinkType Returns the Link Type.

When the link you are iterating is of AppTypes or the name is obtained using the Summary property.Note: External Jira Confluence,

The notation is:

Expand to see the sample code

 #{for links}
 ${Links[n].AppType}
 ${Links[n].LinkType}
 ${Links[n].Key}
 ${Links[n].Summary}
 ${Links[n].URL}
#{end}

or

#{for <VariableName>=LinksCount}
 Content and Linked Issue Mappings. Example: ${Links[VariableName].Field}
#{end}

The documents below demonstrates an example of a template that iterates over linked issues.

blocked URL Iterating_Issue_Links.docx

 blocked URL Iterating_Issue_Links.xlsx

Issue Comments

Because it is not known in advance how many comments exist for an issue, you can iterate a section over all the comments on an issue. This allows you to
create a table that dynamically grows according to the number of existing comments. The notation is:

Comments Fields Description

Author The author of the comment

AuthorFullName The full name of the author of the comment

Body The comment

Created The date the comment was posted

GroupLevel The group level of the comment

https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Links.docx?version=13&modificationDate=1700621984867&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/excel.png?version=1&modificationDate=1605284307108&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Links.xlsx?version=13&modificationDate=1700621986567&api=v2

Expand to see the sample code

 #{for comments}
 ${Comments[n].Author}
 ${Comments[n].AuthorFullName}
 ${Comments[n].Body}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Comments[n].Created}
 ${Comments[n].GroupLevel}
#{end}

or

#{for <VariableName>=CommentsCount}
 Content and Issue Mappings. Example: ${Comments[VariableName].Field}
#{end}

The documents below demonstrate an example of a Word template that iterates over issue comments.

 blocked URL Iterating_Issue_Comments.docx

 blocked URL Iterating_Issue_Comments.xlsx

Issue Worklogs

Because it is not known in advance how many worklogs exist for an issue, you can iterate a section over all the worklogs of an issue. This allow you to
create a table that dynamically grows according to the number of existing worklogs. The notation is:

Worklogs Fields Description

Author The author of the worklog

AuthorFullName The full name of the author of the worklog

Comment The comment of the worklog

Created The date the worklog was created

Date Started The date the worklog was started

Time Spent The time spent in seconds

TimeSpentFormatted The time spent as displayed on Jira

BilledHours The billed hours in seconds ()Belongs to Tempo Timesheets plugin

BilledHoursFormatted The billed hours as displayed on Jira ()Belongs to Tempo Timesheets plugin

Expand to see the sample code

 #{for worklogs}
 ${Worklogs[n].Author}
 ${Worklogs[n].AuthorFullName}
 ${Worklogs[n].Comment}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Worklogs[n].Created}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Worklogs[n].Date Started}
 ${Worklogs[n].Time Spent}
 ${Worklogs[n].TimeSpentFormatted}
#{end}

or

#{for <VariableName>=WorklogsCount}
 Content and Worklog Mappings. Example: ${Worklogs[VariableName].Field}
#{end}

https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Comments.docx?version=13&modificationDate=1700621985307&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/excel.png?version=1&modificationDate=1605284307108&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Comments.xlsx?version=13&modificationDate=1700621985721&api=v2

Issue Sub-Tasks

Because it is not known in advance how many subtasks exist for an issue, you can iterate a section over all the subtasks of an issue. This allows you to
create a table that dynamically grows according to the number of existing subtasks. The notation is:

Subtasks Fields Description

Key The key of the subtasks

Summary The summary of the subtasks

AssigneeUserDisplayName The assignee user of the subtasks

Expand to see the sample code

 #{for subtasks}
 ${Subtasks[n].Key}
 ${Subtasks[n].Summary}
 ${Subtasks[n].AssigneeUserDisplayName}
#{end}

or

#{for <VariableName>=SubtasksCount}
 Content and Issue Mappings. Example: ${Subtasks[VariableName].Field}
#{end}

The documents below demonstrate an example of a template that iterates over issue subtasks.

 blocked URL Iterating_Issue_Subtasks.docx

 blocked URL Iterating_Issue_Subtasks.xlsx

For an example of how to iterate the details of a subtask Parent issue, please check the Iterating JQL Queries area below.

Issue Components

Because it is not known in advance how many components exist for an issue, you can iterate a section over all the components of an issue. This allows
you to create a table that dynamically grows according to the number of existing components. The notation is:

Components Fields Description

Name The name of the component

Description The description of the component

Lead The name of the component lead

Id The ID of the component

ProjectId The project ID of the component

AssigneeType The assignee type of the component

Expand to see the sample code

 #{for components}
 ${Components[n].Name}
 ${Components[n].Description}
 ${fullname:Components[n].Lead}
 ${Components[n].Id}
 ${Components[n].ProjectId}
 ${Components[n].AssigneeType}
#{end}

 The documents below demonstrate an example of a template that iterates over issue components.

 blocked URL Iterating_Issue_Components.docx

 blocked URL Iterating_Issue_Components.xlsx

https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Subtasks.docx?version=13&modificationDate=1700621986142&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/excel.png?version=1&modificationDate=1605284307108&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Subtasks.xlsx?version=13&modificationDate=1700621987031&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Components.docx?version=13&modificationDate=1700621987447&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/excel.png?version=1&modificationDate=1605284307108&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Components.xlsx?version=13&modificationDate=1700621987872&api=v2

Issue Status Transitions

Because it is not known in advance how many Status Transitions exist for an issue, you can iterate a section over all the Status Transitions of an issue.
This allows you to create a table that dynamically grows according to the number of existing status transitions. The notation is:

Status Transitions Fields Description

Author The author of the status transition

Created The date the status transition was performed

OldStatus The old status of the status transition

NewStatus The new status of the status transition

Expand to see the sample code

 #{for statusTransitions}
 ${StatusTransitions[n].Author}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):StatusTransitions[n].Created}
 ${StatusTransitions[n].OldStatus}
 ${StatusTransitions[n].NewStatus}
#{end}

or

#{for <VariableName>=StatusTransitionsCount}
 Content and StatusTransitions Mappings. Example: ${StatusTransitions[VariableName].Field}
#{end}

The documents below demonstrate an example of a template that iterates over status transitions.

 blocked URL Iterating_Issue_StatusTransitions.docx

 blocked URL Iterating_Issue_StatusTransitions.xlsx

Issue Attached Images

Because it is not known in advance how many Images can exist for an issue (as an attachment), you can iterate a section over all the attached images of
an issue to get some metadata about them. This allows you to create a table that dynamically grows according to the number of existing images. The
notation is:

Attachments Images Fields Description

ID The ID of the attached image

Image The image of the attached image

Name The name of the attached image

Size The size of the attached image

HumanReadableSize The size of the attached image

Author The author of the attached image

Created The date the attached image was created

MimeType The type of the attached image

ThumbnailURL The URL to the thumbnail of the image

https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_StatusTransitions.docx?version=13&modificationDate=1700621988312&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/excel.png?version=1&modificationDate=1605284307108&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_StatusTransitions.xlsx?version=13&modificationDate=1700621988776&api=v2

Expand to see the sample code

 #{for images}
 ${Images[n].Image|maxwidth=150|maxheight=150}
 ${Images[n].Name}
 ${Images[n].ID}
 ${Images[n].Size}
 ${Images[n].HumanReadableSize}
 ${Images[n].Author}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Images[n].Created}
 ${Images[n].MimeType}
 ${Images[n].ThumbnailURL}
 #{end}

or

#{for <VariableName>=ImagesCount}
 Content and Images Mappings. Example: ${Images[VariableName].Field}
#{end}

The image below demonstrates an example of a Word template that iterates over attached images.

 blocked URL Iterating_Issue_Images.docx

Expand to see the sample code

 #{for images}
 ${Images[n].Image|width=150|height=150}
 #{end}

These values are in pixels and if you only define one of them the image will be rescaled.

The documents below demonstrate an example of an Excel template that iterates over attached images.

 blocked URL Iterating_Issue_Images.xlsx

Issue Attachments

Because it is not known in advance how many attachments exist in an issue, you can iterate a section over all the attachments of an issue. This allows you
to create a table that dynamically grows according to the number of existing attachments. The notation is:

Attachments Fields Description

ID The ID of the attachment

Name The name of the attachment

Author The author of the attachment

AuthorFullName The full name of the author of the attachment

Created The date the attachment was created

Doc. Generator will automatically read the EXIF orientation property of an image and rotate it to its correct orientation. You can turn this off by
adding to your template.this property

Note that, if you use both maxWidth and width mappings, only the max value will be read. The same behavior happens with height and
maxHeight.

https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Images.docx?version=13&modificationDate=1700621989189&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/excel.png?version=1&modificationDate=1605284307108&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Images.xlsx?version=13&modificationDate=1700621991663&api=v2
https://docs.getxray.app/display/XRAY/Props

Size The size of the attachment

HumanReadableSize The formatted size of the attachment

MimeType The type of the attachment

Expand to see the sample code

 #{for attachments}
 ${Attachments[n].ID}
 ${Attachments[n].Name}
 ${Attachments[n].Author}
 ${Attachments[n].AuthorFullName}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Attachments[n].Created}
 ${Attachments[n].Size}
 ${Attachments[n].HumanReadableSize}
 ${Attachments[n].MimeType}
#{end}

or

#{for <VariableName>=AttachmentsCount}
 Content and Issue Mappings. Example: ${Attachments[VariableName].Field}
#{end}

The documents below demonstrate an example of a template that iterates over attachments.

 blocked URL Iterating_Issue_Attachments.docx

 blocked URL Iterating_Issue_Attachments.xlsx

Issue Labels

Because it is not known in advance how many labels exist in an issue, you can iterate a section over all the labels of an issue. The notation is:

Attachments Fields Description

Name The name of the label

 #{for labels}
 ${Labels[n].Name}
#{end}

or

#{for <VariableName>=LabelsCount}
 ${Labels[VariableName].Name}
#{end}

The documents below demonstrate an example of a template that iterates over labels.

 blocked URL Iterating_Issue_Labels.docx

 blocked URL Iterating_Issue_Labels.xlsx

Project Versions

You can iterate over all project versions to which the issue belong to. The notation is:

Attachments Fields Description

Name The name of the project version

Description The description of the project version

https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Attachments.docx?version=13&modificationDate=1700621989622&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/excel.png?version=1&modificationDate=1605284307108&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Attachments.xlsx?version=13&modificationDate=1700621990065&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Labels.docx?version=13&modificationDate=1700621990594&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/excel.png?version=1&modificationDate=1605284307108&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_Labels.xlsx?version=13&modificationDate=1700621991186&api=v2

 Start
date

The Start Date of the project version

 Release
date

The Release Date of the project version

 #{for projectVersions}
 ${ProjectVersions[n].Name}
 ${ProjectVersions[n].Description}
 ${dateformat("dd-MM-yyyy"):ProjectVersions[n].Start date}
 ${dateformat("dd-MM-yyyy"):ProjectVersions[n].Release date}
#{end}

or

#{for <VariableName>=ProjectVersionsCount}
 ${ProjectVersions[VariableName].Name}
 ${ProjectVersions[VariableName].Description}
 ${dateformat("dd-MM-yyyy"):ProjectVersions[VariableName].Start date}
 ${dateformat("dd-MM-yyyy"):ProjectVersions[VariableName].Release date}
#{end}

The documents below demonstrate an example of a template that iterates over project version.

 blocked URL Iterating_Issue_ProjectVersions.docx

 blocked URL Iterating_Issue_ProjectVersions.xlsx

Iterating JQL Queries
You can iterate issues that are the result of a . The syntax is similar to the other iterations, but there is a parameter that will receive the JQL Query clause
JQL Query. A few examples are provided below.

Expand to see the sample code

 a simple example iterating the details of issues from a specified Project:

#{for i=JQLIssuesCount|clause=project = DEMO}
 ${JQLIssues[i].Key}
 ${JQLIssues[i].Summary}
#{end}

or a more advanced example iterating the details of issues linked with the current Issue:

#{for m=JQLIssuesCount|clause=issuekey in linkedIssues (${Links[j].Key})}
 Linked Issue ${JQLIssues[m].Summary} has ${JQLIssues[m].LinksCount} links
#{end}

or an also advanced example iterating the details of the Parent issue from the current Subtask:

#{for i=JQLIssuesCount|clause=issuekey = ${ParentIssueKey}}
 ${JQLIssues[i].Key}
 ${JQLIssues[i].Id}
 ${JQLIssues[i].Description}
#{end}

The documents below demonstrate an example of a template that iterates over issue subtasks.

 blocked URL Iterating_JQLIssues.docx

 blocked URL Iterating_JQLIssues.xlsx

https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_ProjectVersions.docx?version=13&modificationDate=1700621992146&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/excel.png?version=1&modificationDate=1605284307108&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_Issue_ProjectVersions.xlsx?version=13&modificationDate=1700621992612&api=v2
https://confluence.atlassian.com/display/JIRA/Advanced+Searching#AdvancedSearching-WhatisanAdvancedSearch?
https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_JQLIssues.docx?version=13&modificationDate=1700621993040&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/excel.png?version=1&modificationDate=1605284307108&api=v2
https://docs.getxray.app/download/attachments/62282113/Iterating_JQLIssues.xlsx?version=13&modificationDate=1700621993480&api=v2

Applying filters to Iterations
If you want to take the previous iterations over comments, subtasks and issue links to another level of control, you can use a JavaScript filter to define over
which issues the iteration will be made. This can be useful in the following scenarios:

Iterating over linked issues that are only of a specific issue type
Iterating over subtasks of a specific issue type
Iterating over linked issues with a specific priority
Iterating over comments created by a specific user

The notation for applying filters to the iterations is:

Expand to see the sample code

 #{for <VariableName>=<LinksCount|SubtasksCount|CommentsCount|WorklogsCount>|filter=%{<Javascript>}}
 Content here
#{end}

is the name of the variable to use as the iteration index. VariableName
 indicates over which type of entities you want to iterate. LinksCount|SubtasksCount|CommentsCount

 indicates the filter to be applied in the iteration.Filter

Notice that as the filter is evaluated as a JavaScript expression, which provides flexibility in the definition of the conditions. You can use and (&&), or (||)
and other logical operators supported by the JavaScript language.

It is also possible to format fields inside iteration filters. For more information on formatters, see .Native Iterations

The image below demonstrates an example of a template that iterates over issue links and comments with filters being applied.

Links Bugs with High Priority:

 blocked URL Links_Bugs_HighPriority.docx

Nested Iterations:

 blocked URL Links_Nested_Iterations.docx

Iterating in the same line of the document
You can also possible to iterate values in the same line of the document. This can be useful if you want to display a list of Subtasks on Linked Issues in the
same line, separated by commas or spaces.

Expand to see the sample code

 Users that added comments to this issue: #{for comments}${Comments[n].Author} #{end}

Subtasks of this issue: #{for j=SubtasksCount}${Subtasks[j].Key};#{end}

Linked issues this issue duplicates: #{for j=LinksCount|filter=%{'${Links[j].LinkType}'.equals
('duplicates')}}${Links[j].Key} #{end}

Iterating in the same cell in an Excel document
You can also iterate values in the same cell in an Excel document. You can achieve this by simply making your Iteration inside the same cell.

You can use all the Iterations that you are used to and construct them in the exact same way, the difference being that you only use one cell to do them.

You can also use a Filter Name or a Filter Id as a clause. For more info, .read this

https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Links_Bugs_HighPriority.docx?version=13&modificationDate=1700621993964&api=v2
https://confluence.xpand-it.com/download/attachments/37072394/word.png?version=1&modificationDate=1605284236221&api=v2
https://docs.getxray.app/download/attachments/62282113/Links_Nested_Iterations.docx?version=13&modificationDate=1700621994393&api=v2
https://confluence.xpand-it.com/display/XRAY410/Helper+Functions#HelperFunctions-FilterJQL&FilterName

Expand to see the sample code

 Issue iteration as a demonstration.
Copy this iteration below and paste it into a cell.

&{for issues} ${Key} &{end}

Iterating with the BREAK or CONTINUE statement
You can iterate anything, set up a Conditional expression and then utilize the BREAK and CONTINUE statements.

The way to do this is by doing a normal Conditional expression and using the mapping #{break} or #{continue} inside it.

Expand to see the sample code

 Imagine that you have a Jira Issue that contains these comments:
- Hello
- World
- Greetings
- Hi

For the Break functionality, lets say that you want to stop the iteration if the current comment is "World".
Here is the template for that:
#{for comments}
Current Comment: ${Comments[n].Body}
#{if (%{'${Comments[n].Body}'.equals('World')})}
#{break}
#{end}
Current Comment Author: ${Comments[n].Author}
#{end}
In this case, it will print the comment "Hello" and it´s author. Next it will print the comment Body "World"
but since the Conditional expression is true, it will stop the iteration all together and not print anything
else.
Note: Anything after the #{break} mapping will not be printed in the exported document.

For the Continue functionality, lets say that you want to skip to the next iteration if the current comment is
"World", bypassing the Author mapping for this iteration. Here is the template for that:
#{for comments}
Current Comment: ${Comments[n].Body}
#{if (%{'${Comments[n].Body}'.equals('World')})}
#{continue}
#{end}
Current Comment Author: ${Comments[n].Author}
#{end}
In this case, it will print the comment "Hello" and it´s author. Next, it will print the comment Body "World"
but since the Conditional expression is true, it will continue to the next iteration, not printing the Author
of the "World" comment.

Iterating Parent Issues
You can iterate a section over all the parent issues of an issue. This allows you to create a table that dynamically grows according to the information you
want to see from parent issues.

Imagine that you have a Jira Issue that contains a Key, Summary, Description and further information. From now on, you are able to get all the information
from a parent issue. In order to get those fields, you just need to have the following definition:

${Parent.<Field>}

Example:

Expand to see the sample code

 &{for issues|filter=%{'${IssueTypeName}'.equals('Sub-task')}}
 ${Parent.Key}
 ${Parent.Summary}
 ${Parent.Description}
 ${wiki:Parent.Description}
 ${html:Parent.Description}
 ${dateformat(“dd-MM-yyyy HH:mm:ss”):Parent.date}
 ${emailaddress:Parent.userpicker}
&{end}

This example only has a few fields, but this new feature allows you to get all information from a parent issue.

Sorting iterations
Imagine that you have an iteration and want to sort it by any field that it can export normally. This will be the header for such an iteration:

#{for comments|sortby=<Iteration mapping>}

NOTE: The mapping after the "sortby" must be equal to the supported mappings for each Iteration.

Example:

Expand to see the sample code

 This iteration will be sorted by the Body of all the comments in the issue.

#{for comments|sortby=Body}
${Comments[n].Author}
${Comments[n].Body}
#{end}

Sort By on multi issue export

The can also be used to sort a &{for issues} iteration on a Bulk Export.sortby

Expand to see the sample code

 &{for issues|sortby=IssueTypeName}
${Key} - ${IssueTypeName}
&{end}

Sorting Criteria

 and can be defined in order to define how do you want to sort your data. The default value is .asc desc asc

	Native Iterations

