
Integration with TeamCity

Overview
Release Notes
Installation

Manual Installation
Configuration

Jira servers
Jira Cloud

Build Steps
Xray: Cucumber Features Export Task

Configuration
Xray: Cucumber Features Import Task
Xray: Results Import Task

Configuration
Additional fields

Examples
Cucumber

Exporting Cucumber features
Importing Cucumber features
Importing the execution results
Importing the execution results with user-defined field values

JUnit
Importing the execution results

Troubleshooting
The build process is failing with status code 403
Invalid JIRA instance

Overview
Xray enables easy integration with TeamCity through the "Xray TeamCity Plugin", providing the means for successful Continuous Integration by allowing
users to report automated testing results.

Release Notes
Xray TeamCity Plugin 1.0.0 Release Notes
Xray TeamCity Plugin 1.1.0 Release Notes

Please note

Keep in mind that some endpoints may not be available for Xray Cloud, just for Xray for Jira server.

https://docs.getxray.app/display/XRAY400/Xray+TeamCity+Plugin+1.0.0+Release+Notes
https://docs.getxray.app/display/XRAY400/Xray+TeamCity+Plugin+1.1.0+Release+Notes

1.

1.
2.
3.
4.

a.
b.

1.
2.

3.

Installation
The installation is made manually. For more information on how to install add-ons, please refer to .how to install add-ons

Manual Installation

Upload the plugin

2. Restart TeamCity (if needed as shown in the screenshot below)

Configuration

Xray for TeamCity is configured in the global settings configuration page > .Administration Integrations > Xray

Jira servers

The Jira servers configuration defines connections with Jira instances.

To add a new Jira instance connection, you need to specify some properties:

Configuration alias: a friendly name for the configuration
Server or Cloud: Server
Server Address: The address of the Jira Server where Xray is running
Authentication:

User: username
Password.

Jira Cloud

The Jira Cloud configuration defines connections with Jira Cloud.

To add a new Jira Cloud connection, you need to specify some properties:

Configuration alias: a friendly name for the configuration
Server or Cloud: Cloud

Requirements

The TeamCity baseline for this add-on is 2018.1 and it may not work properly with previous versions.

Download the latest version of the TeamCity Plugin

You may download the latest version of the TeamCity plugin from the latest .Release Notes

Please note

The user present in this configuration must exist in the JIRA instance and have permission to Create Test and Test Execution Issues

https://confluence.jetbrains.com/display/TCD18/Installing+Additional+Plugins

3.
a.
b.

Authentication:
Client ID: obtained from Xray Cloud (more info)here
Client Secret: obtained from Xray Cloud (more info)here

Build Steps
Build steps are the building blocks of the build process. These need to be defined in the build configuration.

The app provides:

one build step for exporting Cucumber Scenario/Scenario Outlines from Jira as .feature files
one build step for importing Cucumber Tests from existing Cucumber features into Jira.
one build step which publishes the execution results back to Jira.

Xray: Cucumber Features Export Task

This build step will export the Cucumber Tests (i.e., Scenario/Scenario Outlines) in .feature or bundled in a .zip file. The rules for exporting are defined .here

It invokes Xray's Export Cucumber Tests REST API endpoint (see more information: or).server cloud

Configuration

Some fields need to be configured in order to export the Cucumber Tests. As input, you can either specify issue keys (see the endpoint documentation or f
the or) or the ID of the saved filter in Jira.server cloud

field description

Jira
instan
ce

The Jira instance where Xray is running

Issue
keys

Set of issue keys separated by ";"

Filter
ID

A number that indicates the filter ID

File
path

The relative path of the directory where the features should be exported to; normally, this corresponds to the "features" folder of the Cucumber
project that has the implementation steps. Note: The directory will be created if it does not exist.

https://confluence.xpand-addons.com/display/XRAYCLOUD/Global+Settings%3A+API+Keys
https://confluence.xpand-addons.com/display/XRAYCLOUD/Global+Settings%3A+API+Keys
https://docs.getxray.app/display/XRAY400/Export+Cucumber+Features
https://confluence.xpand-addons.com/display/XRAY/Exporting+Cucumber+Tests+-+REST
https://confluence.xpand-addons.com/display/XRAYCLOUD/Exporting+Cucumber+Tests+-+REST
https://confluence.xpand-addons.com/display/XRAY/Exporting+Cucumber+Tests+-+REST
https://confluence.xpand-addons.com/display/XRAY/Exporting+Cucumber+Tests+-+REST
https://confluence.xpand-addons.com/display/XRAYCLOUD/Exporting+Cucumber+Tests+-+REST

Xray: Cucumber Features Import Task

This build step is only available for the server and will import existing cucumber Tests from existing Cucumber feature files into Xray issues. This Task will
import from .feature files and also from .zip files.

It invokes Xray's Import Cumcumber Tests REST API endpoint (see more information)here

field decription

JIRA instance The Jira instance where Xray is running.

Project Key This is the project where the Tests and Pre-Conditions will be created/updated.

Cucumber feature files directory This is the directory containing your feature files. All the files in this directory and sub directories will be imported.

Modified in the last hours By entering an integer n here, only files that where modified in the last n hours will be imported.
Leave empty if you do not want to use this parameter.

Xray: Results Import Task

The app provides easy access to Xray's Import Execution Results REST API endpoints (see more information for the or). Therefore, it mimics server cloud
the endpoints input parameters.

It supports importing results in Xray's own JSON format, Cucumber, Behave, JUnit, and NUnit, among others. However, there are some endpoints in the
server that may not yet be available for Xray Cloud.

These are the available endpoints.

Server Cloud

Xray JSON

Cucumber JSON

Cucumber JSON multipart

Behave JSON

Behave JSON multipart

JUnit XML

JUnit XML multipart

NUnit XML

NUnit XML multipart

Robot XML

Robot XML multipart

Compressed .zip file

TestNG XML

TestNG XML multipart

Using a glob expression, you can import multiple results files in the following formats:

JUnit
TestNG
NUnit
Robot framework

For those formats, the file path needs to be relative to the workspace.

Configuration

https://confluence.xpand-addons.com/display/XRAY/Importing+Cucumber+Tests+-+REST
https://confluence.xpand-addons.com/display/XRAY/Import+Execution+Results+-+REST
https://confluence.xpand-addons.com/display/XRAYCLOUD/Import+Execution+Results+-+REST

1.
2.

3.

field description

Jira instance The Jira instance where Xray is running

Format A list of test result formats and its specific endpoint

Execution Report File The results relative file path

"Glob" expressions are supported for:

JUnit
TestNG
NUnit
Robot framework

Additional fields

Depending on the chose test result format and endpoint, some additional fields may need to be configured.

format and
specific
endpoint

field description

Behave JSON
multipart

Cucumber JSON
multipart

NUnit XML
multipart

JUnit XML multipart

Robot XML
multipart

TestNG XML
multipart

Test execution
fields

An object (JSON) specifying the fields for the issue. You may specify the object either directly in the field or
in the file path.

NUnit XML

JUnit XML

Robot XML

TestNG XML

Import to Same
Test Execution

When this option is check, if you are importing multiple execution report files using a glob expression, the
results will be imported to the same Test Execution

Project key Key of the project where the Test Execution (if the Test Execution Key field wasn't provided) and the Tests
(if they aren't created yet) are going to be created

Test execution
key

Key of the Test Execution

Test plan key Key of the Test Plan

Test environments List of Test Environments separated by ";"

Revision Source code's revision being target by the Test Execution

Fix version The Fix Version associated with the test execution (it supports only one value)

Examples

Cucumber

In a typical , after having created a Cucumber project and the Cucumber tests specified in Jira, you may want to have a project that Cucumber Workflow ex
 the features from Jira, executes the automated tests on a CI environment and then back its results.ports imports

For this scenario, the Jenkins project would be configured with a set of tasks responsible for:

Pulling the Cucumber project
Exporting Cucumber features from Jira to your Cucumber project

Learn more

The custom field IDs can be obtained using the Jira REST API Browser tool included in Jira. Each
ID is of the form " ".customfield_ID

Another option, which does not require Jira administration rights, is to invoke the "Get edit issue
meta" in an existing issue (e.g., in a Test issue) as mentioned .here

Example: GET http://yourserver/rest/api/2/issue/CALC-1/editmeta

http://confluence.xpand-addons.com/display/XRAY/Testing+with+Cucumber
https://docs.atlassian.com/jira/REST/server/#api/2/issue-getEditIssueMeta

3.
4.

Executing the tests in the CI environment
Importing the execution results back to Jira

Exporting Cucumber features

To start the configuration, add the build step Xray: Cucumber Features Export Task.

After that, configure it.

In this example, we configured the task to extract the from a set of issues (PROJ-78 and PROJ-79) to the folder that holds the Cucumber project.features

Importing Cucumber features

To start the configuration, add the build step Xray: Cucumber Features Import Task.

After that, configure it.

In this example, we configured the task to import to the Project TEAM of the Xray instance all the .features and .zip files that are contained in /Cucumber
directory and sub directories, which were modified in the last 3 hours.

Importing the execution results

To start the configuration, add a build step . Xray: Results Import Task

After that, you may configure it.

In this example, we configured the task to import the results back to Jira.Cucumber JSON

Once all configurations are done, click Save at the bottom of the page.

After running the job, the expected result is a new Test Execution issue created in the Jira instance.

Importing the execution results with user-defined field values

For Cucumber, Behave, JUnit, Nunit and Robot, Xray for Jenkins allows you to create new Test Executions and have control over newly-created Test
Execution fields. You can send two files, the normal execution result file and a JSON file similar to the one Jira uses to create new issues. More details
regarding how Jira creates new issues . here

For this scenario and example, the import task needs to be configured with the format. When selecting this option, you can Cucumber JSON Multipart
additionally configure the in one of two ways:Test Execution fields

Insert the relative to the JSON file containing the information;path
Or, insert the directly in the field.JSON content

In this example, we configured the following object:

{
 "fields": {
 "project": {
 "key": "PROJ"
 },
 "summary": "Test Execution for Cucumber results",
 "issuetype": {
 "id": "10102"
 }
 }
}

And configured the task to import the results back to Jira.Cucumber JSON Multipart

https://developer.atlassian.com/jiradev/jira-apis/about-the-jira-rest-apis/jira-rest-api-tutorials/jira-rest-api-example-create-issue

1.
2.
3.

Once all configurations are done, click Save.

After running the job, the expected result is a new Test Execution issue created in the Jira instance, with the Test Execution fields as specified in the build
step configuration.

JUnit

Apart from supporting Cucumber natively, Xray enables you to take advantage of many other testing frameworks like JUnit. In this sense, Xray for Jenkins
lets you import results in other formats besides Cucumber JSON.

If you want to import a typical Job outline would be:JUnit XML reports,

Pulling the JUnit project
Executing the tests in the CI environment
Importing the execution results, including Tests, to JIRA

Importing the execution results

To start the configuration, add the build step . Xray: Results Import Task

After that, configure it.

In this example, we have a configuration where the format is chosen.JUnit XML

After running the plan, the expected result is a new Test Execution issue created in the JIRA instance.

Make sure to select "Always, even if build stop command was issued" so, even some previous step fail, the tests will still be imported.

You can also import multiple results using a glob expression, like in the following example

Troubleshooting

The build process is failing with status code 403

When you check the log, it has the following:

By default, when you s try to log into Jira with the wrong credentials, the Jira instance will prompt you to provide a CAPTCHA the next time you uccessively
try to log in. It is not possible to provide this information via the build process, so it will fail with status code .403 Forbidden

You will need to log into Jira via the browser and provide the CAPTCHA.

If you are a Jira administrator, you can go to Jira administration > User Management and reset the failed login.

Invalid JIRA instance

When you check the log, it has the following:

This occurs when a JIRA instance is selected in the build step configuration and that instance is later deleted in the Xray global settings.

This error is shown in the build step.

To solve this, edit the build step, select a valid JIRA Instance and save.

	Integration with TeamCity

