Testing using Cucumber in Java

® Overview
® Usage scenarios
® Example
© Using Jira and Xray as master
= Step-by-step
© Using Git or other VCS as master
= Step-by-step
® FAQ and Recommendations
* References

Overview

In this tutorial, we will create some tests in Cucumber using Java.

Cucumber is mainly a collaboration framework used in BDD context in order to improve shared understanding within the team, usually during "3 Amigos"
sessions. That's its main fit.

However, some teams use it in other contexts (e.g. after sofware has being built) for implementing automated tests and take advantage of Gherkin syntax
to have visibility/abstraction of the underlying automation code and have reusable automation code.

(Test) Scenarios derived from Cucumber are executable specifications; their statements will have a corresponding code implementation. These test
scenarios are feature and more business oriented; they're not unit/integration tests.

Your specification is made using Gherkin (i.e. Given, When, That) statements in Scenario(s) or Scenario Outline(s), eventually complemented with a
Background. Implementation of each Gherkin statement (i.e. "step") is done in code; the Cucumber framework finds the code based on regular or
cucumber expressions.

Usage scenarios

Cucumber is used in diverse scenarios. Next you may find some usage patterns, even though Cucumber usage is mostly recommended only if you are
adopting BDD.

1. Teams adopting BDD, start by defining a user story and clarify it using Cucumber Scenario(s); usualy, Cucumber Scenario(s)/Scenario Outline(s)
are specified directly in Jira, using Xray
2. Teams adopting BDD but that favour a more Git based approach (e.g. GitOps). In this case, stories would be defined in Jira but Cucumber .
feature files would be specified using some IDE and would be stored in Git, for example
3. Teams not adopting BDD but still using Cucumber, more as an automation framework. Sometimes focused on regression testing; sometimes, for
non-regression testing. In this case, cucumber would be used...
a. With a user story or some sort of "requirement” described in Jira
b. Without any story/"requirement" described in Jira

You may be adopting, or aiming to, one of the previous patterns.

Before moving into the actual implementation, we need to decide which workflow we'll use: do we want to use Xray/Jira as the master for writing the
declarative specification (i.e. the Gherkin based Scenarios), or do we want to manage those outside using some editor and store them in Git, for example?

@ Learn more

Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview of the possible workflows.

The place that you'll use to edit the Cucumber Scenarios will affect your workflow. There are teams that prefer to edit Cucumber Scenarios in
Jira using Xray, while there others that prefer to edit them by writing the .feature files by hand using some IDE.

Example

For the purpose of this tutorial, we'll use a simple, dummy Calculator implemented in a Java class as our target for testing.


https://docs.getxray.app/pages/viewpage.action?pageId=64855144

@ Try it yourself!

The code on this tutorial is available in the cucumber-java-calc GitHub repository.

You can fork it and try it for youself.

src/main/java/com/xray/tutorials/Calculator.java

package com xray.tutorials;

public class Calcul ator

{

/1 Square function
public static int Square(int num
{

}

return nuntnum

/] Add two integers and returns the sum
public static int Add(int nunl, int nunR )
{

}

return numl + nung;

/1 Add two integers and returns the sum
public static doubl e Add(doubl e numl, double nun? )

{
return nunl + nung;
}
/1 Multiply two integers and retuns the result... this code is buggy on purpose
public static int Multiply(int nunl, int nun2 )
{
if (num==0) {
return nung;
} else if (nunk==0) {
return numl;
} else {
return numl * nung;
}
}
public static int Divide(int numl, int nun? )
{
return numl / nung;
}

/1 Subtracts small nunber from bi g nunber
public static int Subtract(int nunl, int nun? )

{ if ( nunl > nun? )
{
return numl - nung;
1eturn nun2 - numntl;
}

}

This tutorial, has the following requirements:

® Java
® Add the dependency of cucumber-jvm (i.e. cucumber-java) to your maven "pom.xml" file

Using Jira and Xray as master


https://cucumber.io/docs/installation/java/
https://github.com/bitcoder/cucumber-java-calc

This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).
The overall flow would be something like this, assuming Git as the source code versioning system:

1. define the story (skip if you already have it)

2. create Scenario/Scenario Outline as a Test in Jira; usually, it would be linked to an existing "requirement"/Story (i.e. created from the respective
issue screen)

. implement the code related to Gherkin statements/steps and store it in Git, for example. To start, and during development, you may need to
generate/export the .feature file to your local environment

. commit previous code to Git

. checkout the code from Git

. generate .feature files based on the specification made in Jira

. run the tests in the ClI

. obtain the report in Cucumber JSON format

. import the results back to Jira

w

©o0o~NO U A

Xray + Jira Some IDE Cl tool Cucumber

: (e.g. IDEA, VSCode)

1. Define story

2. Describe Scenarios and Background
as Test & Precondition issues

5. Checkout code from Git/SVN

1

8. Process results & build report <—=
I
1

9. Submit results to Xray

Note that steps (5-9) performed by the CI tool are all automated, obviously.

To generate .feature file(s) based on Scenarios defined in Jira (i.e. Cucumber Tests and Preconditions), we can do it directly from Jira, by the REST API or
using a ClI tool; we'll see that ahead in more detail.

Step-by-step

All starts with a user story or some sort of “requirement” that you wish to validate. This is materialized as a Jira issue and identified by the corresponding
issue key (e.g. CALC-7931).



Calculator / CALC-7931
As a user, | can calculate the sum of two numbers

# Edit Q Comment Assign  More v Start Progress  Close Issue Admin v
v Details
Type: ) story Status: I (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

Requirement statvs: (TN EEC NS

v Description

As a user, | can calculate the sum of two numbers

v Test Coverage

Create Test Create Sub-Test Execution

We can promptly check that it is “UNCOVERED?” (i.e. that it has no tests covering it, no matter their type/approach).

In this case, we'll create a Cucumber Test, of Cucumber Type "Scenario".

We can fill out the Gherkin statements immediately on the Jira issue create dialog or we can create the Test issue first and fill out the details on the next
screen, from within the Test issue. In the latter case, we can take advantage of the built-in Gherkin editor which provides auto-complete of Gherkin steps.

Calculator /f CALC-7932
simple integer addition

Test Details

Type: Cucumber Scenario Type: Scenario
Scenario: 1 Given I have entered 1 into the calculator
2 And I have entered 2 into the calculator
3 When I press add
4 Then the result should be 3 on the screen|
5

After the Test is created, and since we have done it from the user story screen, it will impact the coverage of related "requirement"/story.

The coverage and the test results can be tracked in the "requirement” side (e.g. user story). In this case, you may see that coverage changed from being
UNCOVERED to NOTRUN (i.e. covered and with at least one test not run).



e Calculator / CALC-7931
As a user, | can calculate the sum of two numbers

# Edit Q Comment Assign  More v Start Progress  Close Issue Admin v

v Details
Type: &) story Status: D (view Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None
Requirement Status: g
v Description

As a user, | can calculate the sum of two numbers

v Test Coverage

Create Test Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~

= Filter(s)
B Show entries Columns ~
P Status Resolution A Key Summary Test Runs Test Status
o =2 OPEN Unresolved CALC-7932 simple integer addition b ToDO |}
(m] ES OPEN Unresolved CALC-7933 negative integer adition m
(m] 3 OPEN Unresolved CALC-7934 sum of two positive numbers m

Additional tests could be created, eventually linked to the same Story or linked to another one (e.g. multiplication).

The related statement's code is managed outside of Jira and stored in Git, for example.
The tests related code is stored under sr c/ t est directory, which itself contains several other directories. In this case, they're organized as follows:

® java/cal cul at or: step implementation files and test runner class.
© The steps "glue-code" is defined in the StepDefinitions class.



src/test/java/calculator/StepDefinitions.java

package cal cul ator;

i nport io.cucunber.java.en. G ven;

i mport io.cucunber.java.en. Then;

i nport io.cucunber.java. en. Wen;
import comxray.tutorials.Calculator;

inport static org.junit.Assert.*;

public class StepDefinitions {
private Integer intl;
private Integer int2;
private Integer result;

@s ven("l have entered {int} into the calculator")

public void i _have_entered_into_the_calculator(lnteger intl) {
this.int2 = this.intl;
this.intl = int1;

@When("l press add")
public void i_press_add() {

this.result = Calculator.Add(this.intl, this.int2);
}

@When("l press multiply")
public void i_press_multiply() {

this.result = Calculator.Miltiply(this.intl, this.int2);
}

@hen("the result should be {int} on the screen")
public void the_result_shoul d_be_on_t he_screen(lnteger value) {
assert Equal s(val ue, this.result);

}

® the test runner is defined in the RunCucumberTest class. Cucumber options can be overriden from the command line, whenever executing
Maven.

src/test/java/calculator/RunCucumberTest.java

package cal cul ator;

i mport io.cucunber.junit.Cucunber;
i mport io.cucunber.junit.Cucunber Options;
inport org.junit.runner. RunWth;

@RunW t h( Cucunber . cl ass)
@ucunber Options(plugin = {"pretty"})
public class RunCucunber Test {

}

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the Export to Cucumber Ul action from within the Test
/Test Execution issue or even based on an existing saved filter. As source, you can identify Test, Test Set, Test Execution, Test Plan or "requirement”
issues. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

® use one of the available CI/CD plugins (e.g. see details of Integration with Jenkins)


https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins

Jenkins cucumber_xray_tests

General Source Code Management Build Triggers Build Environment Build Pc

See the list of available environment variables

Xray: Cucumber Features Export Task

Jira Instance  xray-vm

Issues: CALC-7931;CALC-7935
Filter:
File Path: features

Click here for more details
[e]

® use the REST API directly (more info here)
© #!/bin/ bash

rm-f features/*.feature

curl -u admin:admin “"http://jiraserver.exanple.confrest/raven/ 1.0/ export/test?keys=CALC-7931; CALC
7935&f z=true" -o features.zip

unzip -o features.zip -d features

® ... orevenuse the Ul (e.g. from a Test issue)
E Calculator / CALC-7932
simple integer addition

# Edit Q Comment Assign Start Progress  Resolve Issue  Close Issue Admin v

v Details Log work
Type: @ Test Agile Board Status: G (View Workflow)
Priority: 2 Major Resolution: Unresolved
. Rank to Top . .
Affects Version/s: None Fix Version/s: None
Component/s: None Rank to Bottom
Labels: None Attach files
v Description Voters

Tests As a user, | can calculate the st Stop watching

Watchers
v Test Details
Create sub-task
Type: Cucumber
Convert to sub-task
Scenario Type: Scenario
. Move
Scenario: Given I ha calculator
And I have Link alculator
When I pre
Cl
Then the r ~ "¢ the screen
Labels
Delete

Trigger Jenkins job

v

Pre-Conditions
Trigger Jenkins job an...

<

Test Sets Reset TestRunStatus

This test is not associated with Test
Export to Cucumber l

Export Test to XML

Test Plans Export Test Runs to CSV

<

© This test is not associated with Test Plans vet. -

We will export the features to a new directory named f eat ur es/ on the root folder of your Java project (we'll need to tell Maven to use this folder).

After being exported, the created .feature(s) will contain references to the Test issue key, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement” issue key, if that's the case. The naming of these files is detailed in Export Cucumber Features.


https://docs.getxray.app/display/XRAY500/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAY420/Export+Cucumber+Features

features/1_CALC-7931.feature

@REQ CALC- 7931

Feature: As a user, | can calculate the sumof two nunbers
#As a user, | can calculate the sumof two nunbers
#Tests As a user, | can calculate the sumof two nunbers

@EST_CALC 7934

Scenario Qutline: sumof two positive nunbers
G ven | have entered <input_1> into the cal cul ator
And | have entered <input_2> into the cal cul ator
Wien | press <button>
Then the result should be <output> on the screen

Exanpl es:
| input_1 | input_2 | button | output |
| 20 | 30 | add | 50 |
| 2 | 5 | add | 7 |
| O | 40 | add | 40 |
| 4 | 50 | add | 54 |
| 5 | 50 | add | 55 |

@rEST_CALC- 7933

Scenari o: negative integer adition
Gven | have entered -1 into the cal cul ator
And | have entered 2 into the cal cul ator
Wien | press add
Then the result should be 1 on the screen

#Tests As a user, | can calculate the sumof two nunbers
@rEST_CALC- 7932
Scenario: sinple integer addition

Gven | have entered 1 into the calcul ator

And | have entered 2 into the cal cul ator

Wien | press add

Then the result should be 3 on the screen

features/2_CALC-7935.feature

@REQ _CALC- 7935
Feature: As a user, | can multiply two nunbers
#As a user, | can multiply two nunbers

#sinple integer multiplication

@rEST_CALC- 7936

Scenario: sinple integer multiplication
Gven | have entered 3 into the cal cul ator
And | have entered O into the cal cul ator
When | press multiply
Then the result should be 0 on the screen

To run the tests and produce a Cucumber JSON report, we can run Maven and specify that we want a report in Cucumber JSON format and that it should
process .features from the f eat ur es/ directory.

mvn conpil e test -Dcucunber. plugi n="json:report.json" -Dcucunber.features="features/"



@ Please note

As the report format in Cucumber JSON is being deprecated in favour of Cucumber Messages, a protocol buffer based implementation, the
previous command needs to be adapted slightly.

The report starts by being generated in Cucumber Messages, using "-f message" argument, and then converted to the legacy Cucumber JSON
report using the tool cucumber-json-formatter.

nmvn conpil e test -Dcucunber. plugin="json:report.ndjson" -Dcucunber.features="features/"
cat report.ndjson | cucunber-json-formatter --format ndjson > report.json

This will produce one Cucumber JSON report with all results.

After running the tests, results can be imported to Xray via the REST API, or the Import Execution Results action within an existing Test Execution, or by
using one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins).

example of a Bash script to import results using the standard Cucumber endpoint

curl -H "Content-Type: application/json" -X POST -u adnin:admn --data @report.json" http://jiraserver.exanple.
com rest/raven/ 1. 0/i nport/execution/ cucunber

Post-build Actions

Xray: Results Import Task

Jira Instance xray-vm

Format Cucumber JSSON

Parameters
Execution Report File (file path with file name)  report.json

Import in parallel O

Import all results files in parallel, using all available CPU cores.

Click here for more details

@ Which Cucumber endpoint to use?

To import results, you can use two different endpoints/“formats" (endpoints described in Import Execution Results - REST):

1. the "standard cucumber" endpoint
2. the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. /import/execution/cucumber) is simpler but more restrictive: you cannot specify values for custom fields
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan), if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.


https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins
https://github.com/cucumber/cucumber/tree/master/json-formatter
https://github.com/cucumber/cucumber/tree/master/json-formatter
https://docs.getxray.app/display/XRAY500/Import+Execution+Results+-+REST

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

E [Calculatod / cALC-7938
Execution results [1604941844881]

# Edit Q Comment Assign  More v Start Progress  Resolve Issue  Close Issue Admin v

v Details
Type: [ Test Execution Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None
Test Environments: None
Test Plan: None
v Description

Click to add description

v Tests

Overall Execution Status

3 PASS 1 FAIL

Total Tests: 4

= Filter(s)
C/Ad Show entries. Columns ~
4 Rank Key Summary Test Type  #Req #Def Assignee Status

o 1 CALC-7934  sum of two positive numbers ~ Cucumber 1 o Administrator D >

o 2 CALC-7933  negative integer adition Cucumber 1 o Administrator (D >

[m] 3 CALC-7932  simple integer addition Cucumber 1 [ Administrator (NN >

m] 4 CALC-7936  simple integer multiplication ~ Cucumber 1 0 Administrator >
Showing 1 to 4 of 4 entries First Previous [il Next Last

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

v Tests

Overall Execution Status

3 PASS 1 FAIL

Total Tests: 4

= Filter(s)
Show entries Columns ~
4 Rank Key Summary Test Type #Req #Def Assignee Status

O 1 CALC-7934  sum of two positive numbers ~ Cucumber 1 0 Administrator [T »

O 2 CALC-7933  negative integer adition Cucumber 1 0 Administrator (TN >

O 3 CALC-7932  simple integer addition Cucumber 1 0 Administrator [T »

m] 4 CALC-7936  simple integer multiplication ~ Cucumber 1 0 Administrator .

Showing 1 to 4 of 4 entries First Previous . Nekt E Execution Details

EXECUTE INLINE

Results, including for each example on Scenario Outline, can be expanded to see all Gherkin statements.



Calculator / Test Execution: CALC-7938 / Test: CALC-7936

N N P N ! ] Import Execution Results Export to Cucumber 4. Return to Test Execution 4 Previous
simple integer multiplication
e Execution Details
Test Description N
simple integer multiplication
Test Issue Links (1) A
tests
[ cALC-7935 As a user, | can multiply two numbers a OPEN
Custom Fields A
There are no Test Run Custom Fields defined.
Test Details A
Test Type: Cucumber
Scenario Type: Scenario
Scenario: 1 Given I have entered 3 into the calculator
2 And I have entered @ into the calculator
3 When I press multiply
4 Then the result should be 0 on the screen
Results ~
\ Context Duration Status
» 2167 ms FAIL

Calculator / Test Execution: CALC-7938 / Test: CALC-7936
simple integer multiplication

Import Execution Results

Export to Cucumber

4. Return to Test Execution 4 Prev

Results

Context

Steps

Given | have entered 3 into the calculator

And | have entered 0 into the calculator

When | press multiply

Then the result should be 0 on the screen

java.lang.AssertionError: expected:<0> but was:<3> —=—

Note: in this case, the bug was added on purpose on the Calculator class.

at org.junit.Assert.fail(Assert.java:89)

at org.junit.Assert.failNotEquals(Assert.java:835)
at org.junit.Assert.assertEquals(Assert.java:120)
at org.junit.Assert.assertEquals(Assert.java:146)

at calculator.StepDefinitions.the_result_should be_on_the screen(StepDefinitions.java:36)

at #.the result should be 0 on the screen(file:///Users/smsf/exps/cucumber-java-calc/features/2 CALC-7935.feature:11)

Duration

2.167 ms

0.092 ms

0.706 ms

0.047 ms

1.322 ms

Status

FAIL

FAIL



buggy Multiply() method in Calculator.java

/1 Miltiply two integers and retuns the result... this code is buggy on purpose
public static int Multiply(int nunl, int nun? )
{

if (numl==0) {
return nung;

} else if (nunmk2==0) {
return numdl;

} else {
return numl * nung;

}

(D Screenshots and other attachments

If available, it is possible to see also attached screenshot(s). For this, you'll need to use Cucumber's APl and do it in a After hook, for example
(using scenari o. enbed() ).

The icon 2 (E:I represents the evidences ("embeddings”) for each Hook, Background and Steps.
Test Details A
Test Type: Cucumber
Scenario Type: Soenario
Scenario: 1 Given I have 22 cukes in my belly
2 when I wait 1 hour
3 Then my belly should growl
Results A

Context Duration Status
v - e S
Hooks
Before Cukes.setUp() ©(2) omiizec (D
e — 1
Background {az) evidence_step_30_0.png
Given buy & few cukes. {a2) evidence_step_30_1.ipg “
Steps evidence_step_30_2 txt
Given | have 42 cukes in my baly [t evidence_step_30_3.htmi “
Wihen | weit 1 hour [i5] evidence_step_30_4.xmi [ mss ]
e o bty shoud grand s

Results are reflected on the covered items (e.g. Story issues) and can be seen in ther issue screen.

Coverage now shows that the addition related user story (e.g. CALC-7931) is OK based on the latest testing results; on the other hand, the multiplication
related user story (CALC-7935) is NOK since it has one test currently failing.



Calculator / CALC-7931
As a user, | can calculate the sum of two numbers

# Edit Q Comment Assign  More v Start Progress  Resolve Issue  Close Issue Admin v

v Details
Type: [ Story Status: CED (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

v Description
As a user, | can calculate the sum of two numbers

v Test Coverage
Create Test Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~ —= TN

= Filter(s)

=Y Columns ~
P Status Resolution A Key Summary Test Runs Test Status
o 2 OPEN Unresolved CALC-7932 simple integer addition 0 [ pass |
o 2 OPEN Unresolved CALC-7933 negative integer adition 0 [ pass |
o =2 OPEN Unresolved CALC-7934 sum of two positive numbers 0 [ pass |
Showing 1 to 3 of 3 entries First Previous [4] Next Last

E Calculator]/ CALC-7935
As a user, | can multiply two numbers

# Edit Q Comment Assign  More v Start Progress  Close Issue Admin v

v Details
Type: & story Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

v Description
As a user, | can multiply two numbers

v Test Coverage

Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~ “

= Filter(s)

Columns ~
P Status Resolution A Key Summary Test Runs Test Status
o =2 OPEN Unresolved CALC-7936 simple integer multiplication 0 [ raL ]
Showing 1to 1 of 1 entries First Previous \l Next Last

If we fix the code on the Calculator class, run the tests and import results, coverage for the multiplication related user story will be shown as OK.



fix of Multiply() method in Calculator.java

public static int Multiply(int nunl, int nun2 )

return numl * nung;
Calculator / CALC-7935
As a user, | can multiply two numbers
# Edit Q Comment Assign  More v Start Progress  Resolve Issue  Close Issue Admin v
v Details
Type: [ story Status: & (View Workflow)
Priority: Z Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

Requirement Status:

v Description
As a user, | can multiply two numbers

v Test Coverage
Create Test Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~

= Filter(s)
B~ Show [10 v]entries Columns ~
P Status Resolution 4 Key Summary Test Runs Test Status
g =a OPEN Unresolved CALC-7936 simple integer multiplication =0
Showing 1to 1 of 1 entries First Previous |1| Next Last

Using Git or other VCS as master

You can edit your .feature files using your IDE outside of Jira (eventually storing them in your VCS using Git, for example) alongside with remaining test
code.

In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility of them and report results against them.

The overall flow would be something like this:

=

. look at the existing "requirement"/Story issue keys to guide your testing; keep their issue keys

. specify Cucumber/Gherkin .feature files in your IDE supporting Cucumber/Gherkin and store it in Git, for example. Meanwhile, you may decide to
import/synchronize them Xray to provision or update corresponding Test and/or Precondition entities

. implement the code related to Gherkin statements/steps and store it in Git, for example.

. commit code and .feature file(s) to Git

. checkout the code from Git

import/synchronize the .feature files to Xray to provision or update corresponding Test and/or Precondition entities

. export/generate .feature files from Jira, so that they contain references to Tests and requirements in Jira

. run the tests in the CI

. obtain the report in Cucumber JSON format

. import the results back to Jira

=



Xray + Jira Some IDE Cl tool Cucumber

] (e.g. IDEA, VSCode)

1
1. Define story :

L
L
L
vl
A

4. Commit feature and code to
Git/SVN

5. Checkout code from Git/SVN

- 6. Synchronize/Import feature to Xray
T T T T T e (create/update Tests and Preconditions)

= = = = = = = 5 NAEREEISY I g REETI S

8. Execute Tests

Note that steps (5-10) performed by the CI tool are all automated, obviously.

To import .features to Jira we can either use the REST API or a Cl tool. To export tagged .features from Jira, we can do it directly from Jira, by the REST
API or using a Cl tool; we'll see that ahead in more detail.

Step-by-step

All starts with a user story or some sort of “requirement” that you wish to validate. This is materialized as a Jira issue and identified by the corresponding
issue key (e.g. CALC-7931).



Calculator / CALC-7931
As a user, | can calculate the sum of two numbers

# Edit Q Comment Assign  More v Start Progress  Close Issue Admin v
v Details
Type: ) story Status: I (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

Requirement statvs: (TN EEC NS

v Description

As a user, | can calculate the sum of two numbers

v Test Coverage

Create Test Create Sub-Test Execution

We can promptly check that it is “UNCOVERED?” (i.e. that it has no tests covering it, no matter their type/approach).

Having those to guide testing, we could then describe and implement the Cucumber test scenarios using our favourite IDE.

EXPLORER StepDefinitions.java = addition.feature X = multiplication.feature

> OPEN EDITORS src > test > resources > calculator > = addition.feature

v CUCUMBER-JAVA-CALC @REQ_CALC-7931

ure: As a user, I can add two numbers
Vv resources / calculator

-gitkeep o: simple integer addition

addition.feature Given I have entered 1 into the calculator
= multiplication.feature d I have entered 2 into the calculator
> target W I press add

) dataj the result should be 3 on the screen
ata.json

export_features_cloud.sh negative integer adition

export_features.sh G n I have entered -1 into the calculator
features.zip d I have entered 2 into the calculator
I press add

import_features.sh
the result should be 1 on the screen

import_results_cloud.sh

import_results.sh 0 : sum of two positive numbers
N pom.xml Given I have entered <input_1> into the calculator
report.json / I have entered <input_2> into the calculator
I press <button>

el @l e e the result should be <output> on the screen

run_all_cloud_standard_workflow.sh

run_all_cloud.sh Examp

input_1 input_2 button

20 30 add 50
5 add 7

| output

|

I
40 add | 40

|

|

run_all_git_workflow.sh
run_all_standard_workflow.sh

run_tests.sh 50 add 54

50 add 55

|
|
|
run_all.sh |
|
|

> OUTLINE

> NPM SCRIPTS

> RUNNING TASKS

> SONARLINT RULES

> JAVA PROJECTS

> MAVEN
®21A1® 6 2 Server not selected Ln1,Col15 Spaces:8 UTF-8 LF feature &% ®

1

The related statement's code is managed outside of Jira and stored in Git, for example.
The tests related code is stored under sr c/ t est directory, which itself contains several other directories. In this case, they're organized as follows:

® java/cal cul at or: step implementation files and test runner class.



© The steps "glue-code" is defined in the StepDefinitions class.

src/test/java/calculator/StepDefinitions.java

package cal cul ator;

i nport io.cucunber.java.en. G ven;

i mport io.cucunber.java.en. Then;

i nport io.cucunber.java. en. Wen;
import comxray.tutorials.Calculator;

inport static org.junit.Assert.*;

public class StepDefinitions {
private Integer intl;
private Integer int2;
private Integer result;

@s ven("l have entered {int} into the calculator")

public void i _have_entered_into_the_calculator(lnteger intl) {
this.int2 = this.intl;
this.intl = int1;

@When("l press add")
public void i_press_add() {

this.result = Calculator.Add(this.intl, this.int2);
}

@When("l press nmultiply")
public void i_press_multiply() {

this.result = Calculator.Miltiply(this.intl, this.int2);
}

@hen("the result should be {int} on the screen")
public void the_result_shoul d_be_on_the_screen(lnteger value) {
assert Equal s(value, this.result);

}

® the test runner is defined in the RunCucumberTest class. Cucumber options can be overriden from the command line, whenever executing
Maven.

src/test/java/calculator/RunCucumberTest.java

package cal cul ator;

i mport io.cucunber.junit.Cucunber;
i nport io.cucunber.junit.Cucunber Qptions;
import org.junit.runner. RunWth;

@RunW t h( Cucunber . cl ass)

@ucunber Options(plugin = {"pretty"})
public class RunCucunber Test {

}

Before running the tests in the Cl environment, you need to import your .feature files to Xray/Jira; you can invoke the REST API directly or use one of the
available pluginsi/tutorials for ClI tools.



example of a shell script to import/synchronize .features to Jira and Xray
rm-f features.zip
zip -r features.zip src/test/resources/calculator/ -i \*.feature

curl -H "Content-Type: nultipart/formdata” -u adnmin:admin -F "file=@eatures. zip" "http://jiraserver.exanple.
com rest/raven/ 1. 0/i nport/feature?proj ect Key=CALC'

Xray: Cucumber Features Import Task

Jira Instance Xray-vm

Project Key CALC

Cucumber feature files directory | src/test/resources/calculator

Test Info file
Preconditions file

Modified in the last hours 10

{D Please note

Each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again then Xray can
update the existent Test and don't create any duplicated tests. See Importing Cucumber Tests - REST for details on how it works.

E Calculator / CALC-7932
simple integer addition

& Edit Q Comment Assign  More v Start Progress  Resolve Issue  Close Issue Admin v
v Details
Type: () Test Status: [ OPEN |
Priority: Z Major Resolution: Unreso
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: src/test/resources/calculator/addition.feature

v Description
Click to add description

v Test Details

Type: Cucumber
Scenario Type: Scenario
Scenario: Given I have entered 1 into the calculator

And I have entered 2 into the calculator
When I press add
Then the result should be 3 on the screen


https://docs.getxray.app/display/XRAY420/Importing+Cucumber+Tests+-+REST

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the Export to Cucumber Ul action from within the Test
/Test Execution issue or even based on an existing saved filter. As source, you can identify Test, Test Set, Test Execution, Test Plan or "requirement”
issues. A plugin for your Cl tool of choice can be used to ease this task.

So, you can either:

® use one of the available CI/CD plugins (e.g. see details of Integration with Jenkins)

Jenkins cucumber_xray_tests

Genera Source Code Management Build Trig Build Environment Build Pc

See the list of available environment variables

Xray: Cucumber Features Export Task

Jira Instance  xray-vm

Issues: CALC-7931;CALC-7935
Filter:
File Path: features

Click here for more details
[e]

® use the REST API directly (more info here)
o #!/bin/bash

rm-f features/*.feature

curl -u admn:admin "http://jiraserver.exanple.comrest/raven/ 1.0/ export/test?keys=CALC- 7931; CALC-
7935&f z=true" -o features.zip

unzip -o features.zip -d features

® .. oreven use the Ul (e.g. from a Test issue)
E Calculator / CALC-7932
simple integer addition

# Edit Q Comment Assign Start Progress  Resolve Issue  Close Issue Admin v

v Details Log work
Type: @ Test Agile Board Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
. Rank to Top . .
Affects Version/s: None Fix Version/s: None
Component/s: None Rank to Bottom
Labels: None Attach files
v Description Voters

Tests As a user, | can calculate the st Stop watching

Watchers
v Test Details
Create sub-task
Type: Cucumber
Convert to sub-task
Scenario Type: Scenario
. Move
Scenario: Given I ha calculator
And I have Link alculator
When I pre
Then the r Clone the screen
Labels
Delete

Trigger Jenkins job

v

Pre-Conditions
Trigger Jenkins job an...

v Test Sets Reset TestRunStatus
This test is not i with Test §
I Export to Cucumber | l

Export Test to XML

Test Plans Export Test Runs to CSV

<

This test is not associated with Test Plans vet. -

We will export the features to a new directory named f eat ur es/ on the root folder of your Java project (we'll need to tell Maven to use this folder).


https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY500/Exporting+Cucumber+Tests+-+REST

After being exported, the created .feature(s) will contain references to the Test issue key, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in Export Cucumber Features.

features/1_CALC-7931.feature

@REQ CALG- 7931

Feature: As a user, | can calculate the sumof two nunbers
#As a user, | can calculate the sumof two nunbers
#Tests As a user, | can calculate the sumof two nunbers

@EST_CALC 7934

Scenario Qutline: sumof two positive nunbers
Gven | have entered <input_1> into the cal cul ator
And | have entered <input_2> into the cal cul ator
When | press <button>
Then the result should be <output> on the screen

Exanpl es
| input_1 | input_2 | button | output |
| 20 | 30 | add | 50 |
| 2 | 5 | add | 7 |
| O | 40 | add | 40 |
| 4 | 50 | add | 54 |
| 5 | 50 | add | 55 |

@IEST_CALC- 7933

Scenario: negative integer adition
Gven | have entered -1 into the cal cul ator
And | have entered 2 into the cal cul ator
When | press add
Then the result should be 1 on the screen

#Tests As a user, | can calculate the sumof two nunbers
@IEST_CALC- 7932
Scenario: sinple integer addition

Gven | have entered 1 into the cal cul ator

And | have entered 2 into the cal cul ator

When | press add

Then the result should be 3 on the screen

features/2_CALC-7935.feature

@REQ CALC- 7935
Feature: As a user, | can multiply two nunbers
#As a user, | can nmultiply two nunbers

#sinple integer multiplication

@rEST_CALC- 7936

Scenario: sinple integer multiplication
Gven | have entered 3 into the cal cul ator
And | have entered 0 into the cal cul ator
Wien | press multiply
Then the result should be 0 on the screen

To run the tests and produce a Cucumber JSON report, we can run Maven and specify that we want a report in Cucumber JSON format and that it should
process .features from the f eat ur es/ directory.

m/n conpil e test -Dcucunber. plugin="json:report.json" -Dcucunber.features="features/"


https://docs.getxray.app/display/XRAY420/Export+Cucumber+Features

@ Please note

As the report format in Cucumber JSON is being deprecated in favour of Cucumber Messages, a protocol buffer based implementation, the
previous command needs to be adapted slightly.

The report starts by being generated in Cucumber Messages, using "-f message" argument, and then converted to the legacy Cucumber JSON
report using the tool cucumber-json-formatter.

nmvn conpil e test -Dcucunber. plugin="json:report.ndjson" -Dcucunber.features="features/"
cat report.ndjson | cucunber-json-formatter --format ndjson > report.json

This will produce one Cucumber JSON report with all results.

After running the tests, results can be imported to Xray via the REST API, or the Import Execution Results action within an existing Test Execution, or by
using one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins).

example of a Bash script to import results using the standard Cucumber endpoint

curl -H "Content-Type: application/json" -X POST -u adnin:admn --data @report.json" http://jiraserver.exanple.
com rest/raven/ 1. 0/i nport/execution/ cucunber

Post-build Actions

Xray: Results Import Task

Jira Instance xray-vm

Format Cucumber JSSON

Parameters
Execution Report File (file path with file name)  report.json

Import in parallel O

Import all results files in parallel, using all available CPU cores.

Click here for more details

@ Which Cucumber endpoint to use?

To import results, you can use two different endpoints/“formats" (endpoints described in Import Execution Results - REST):

1. the "standard cucumber" endpoint
2. the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. /import/execution/cucumber) is simpler but more restrictive: you cannot specify values for custom fields
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan), if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.


https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins
https://github.com/cucumber/cucumber/tree/master/json-formatter
https://github.com/cucumber/cucumber/tree/master/json-formatter
https://docs.getxray.app/display/XRAY500/Import+Execution+Results+-+REST

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

E [Calculatod / cALC-7938
Execution results [1604941844881]

# Edit Q Comment Assign  More v Start Progress  Resolve Issue  Close Issue Admin v

v Details
Type: [ Test Execution Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None
Test Environments: None
Test Plan: None
v Description

Click to add description

v Tests

Overall Execution Status

3 PASS 1 FAIL

Total Tests: 4

= Filter(s)
C/Ad Show entries. Columns ~
4 Rank Key Summary Test Type  #Req #Def Assignee Status

o 1 CALC-7934  sum of two positive numbers ~ Cucumber 1 o Administrator D >

o 2 CALC-7933  negative integer adition Cucumber 1 o Administrator (D >

[m] 3 CALC-7932  simple integer addition Cucumber 1 [ Administrator (NN >

m] 4 CALC-7936  simple integer multiplication ~ Cucumber 1 0 Administrator >
Showing 1 to 4 of 4 entries First Previous [il Next Last

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

v Tests

Overall Execution Status

3 PASS 1 FAIL

Total Tests: 4

= Filter(s)
Show entries Columns ~
4 Rank Key Summary Test Type #Req #Def Assignee Status

O 1 CALC-7934  sum of two positive numbers ~ Cucumber 1 0 Administrator [T »

O 2 CALC-7933  negative integer adition Cucumber 1 0 Administrator (TN >

O 3 CALC-7932  simple integer addition Cucumber 1 0 Administrator [T »

m] 4 CALC-7936  simple integer multiplication ~ Cucumber 1 0 Administrator .

Showing 1 to 4 of 4 entries First Previous . Nekt E Execution Details

EXECUTE INLINE

Results, including for each example on Scenario Outline, can be expanded to see all Gherkin statements.



Calculator / Test Execution: CALC-7938 / Test: CALC-7936

N N P N ! ] Import Execution Results Export to Cucumber 4. Return to Test Execution 4 Previous
simple integer multiplication
e Execution Details
Test Description N
simple integer multiplication
Test Issue Links (1) A
tests
[ cALC-7935 As a user, | can multiply two numbers a OPEN
Custom Fields A
There are no Test Run Custom Fields defined.
Test Details A
Test Type: Cucumber
Scenario Type: Scenario
Scenario: 1 Given I have entered 3 into the calculator
2 And I have entered @ into the calculator
3 When I press multiply
4 Then the result should be 0 on the screen
Results ~
\ Context Duration Status
» - 2167 ms FAIL

Calculator / Test Execution: CALC-7938 / Test: CALC-7936

simple integer multiplication Import Execution Results  Export to Cucumber 4 Return to Test Execution 4 Prev
Results
Context Duration Status

v - 2167ms
Steps
Given | have entered 3 into the calculator 0o0s2ms  EZEED
And | have entered 0 into the calculator o706 ms  (NEZESD
When | press multiply 0047ms  (NCZED
Then the result should be 0 on the screen 1322ms

java.lang.AssertionError: expected:<0> but was:<3> —g—
at org.junit.Assert.fail(Assert.java:89)
at org.junit.Assert.failNotEquals(Assert.java:835)
at org.junit.Assert.assertEquals(Assert.java:120)
at org.junit.Assert.assertEquals(Assert.java:146)

at calculator.StepDefinitions. the_result_should be_on_the_screen(StepDefinitions.java:36)

at #.the result should be 0 on the file:///Users/

Not

java-

/2_cALc-7935. feature:11)

. in this case, the bug was added on purpose on the Calculator class.



buggy Multiply() method in Calculator.java

/1 Miltiply two integers and retuns the result... this code is buggy on purpose
public static int Multiply(int nunl, int nun? )
{

if (numl==0) {
return nung;

} else if (nunmk2==0) {
return numdl;

} else {
return numl * nung;

}

(D Screenshots and other attachments

If available, it is possible to see also attached screenshot(s). For this, you'll need to use Cucumber's APl and do it in a After hook, for example
(using scenari o. enbed() ).

The icon 2 (E:I represents the evidences ("embeddings”) for each Hook, Background and Steps.
Test Details A
Test Type: Cucumber
Scenario Type: Soenario
Scenario: 1 Given I have 22 cukes in my belly
2 when I wait 1 hour
3 Then my belly should growl
Results A

Context Duration Status
v - e S
Hooks
Before Cukes.setUp() ©(2) omiizec (D
e — 1
Background {az) evidence_step_30_0.png
Given buy & few cukes. {a2) evidence_step_30_1.ipg “
Steps evidence_step_30_2 txt
Given | have 42 cukes in my baly [t evidence_step_30_3.htmi “
Wihen | weit 1 hour [i5] evidence_step_30_4.xmi [ mss ]
e o bty shoud grand s

Results are reflected on the covered items (e.g. Story issues) and can be seen in ther issue screen.

Coverage now shows that the addition related user story (e.g. CALC-7931) is OK based on the latest testing results; on the other hand, the multiplication
related user story (CALC-7935) is NOK since it has one test currently failing.



Calculator / CALC-7931
As a user, | can calculate the sum of two numbers

# Edit Q Comment Assign  More v Start Progress  Resolve Issue  Close Issue Admin v

v Details
Type: [ Story Status: CED (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

v Description
As a user, | can calculate the sum of two numbers

v Test Coverage
Create Test Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~ —= TN

= Filter(s)

=Y Columns ~
P Status Resolution A Key Summary Test Runs Test Status
o 2 OPEN Unresolved CALC-7932 simple integer addition 0 [ pass |
o 2 OPEN Unresolved CALC-7933 negative integer adition 0 [ pass |
o =2 OPEN Unresolved CALC-7934 sum of two positive numbers 0 [ pass |
Showing 1 to 3 of 3 entries First Previous [4] Next Last

E Calculator]/ CALC-7935
As a user, | can multiply two numbers

# Edit Q Comment Assign  More v Start Progress  Close Issue Admin v

v Details
Type: & story Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

v Description
As a user, | can multiply two numbers

v Test Coverage

Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~ “

= Filter(s)

Columns ~
P Status Resolution A Key Summary Test Runs Test Status
o =2 OPEN Unresolved CALC-7936 simple integer multiplication 0 [ raL ]
Showing 1to 1 of 1 entries First Previous \l Next Last

If we fix the code on the Calculator class, run the tests and import results, coverage for the multiplication related user story will be shown as OK.



fix of Multiply() method in Calculator.java

public static int Multiply(int nunl, int nun2 )

return numl * nung;
Calculator / CALC-7935
As a user, | can multiply two numbers
# Edit Q Comment Assign  More v Start Progress  Resolve Issue  Close Issue Admin v
v Details
Type: & story Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

Requirement Status:

v Description
As a user, | can multiply two numbers

v Test Coverage

Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~

= Filter(s)
B v Show entries Columns ~
P Status Resolution A Key Summary Test Runs Test Status
g =a OPEN Unresolved CALC-7936 simple integer multiplication =0
Showing 1to 1 of 1 entries First Previous 1| Next Last

FAQ and Recommendations

Please see this page.

References

Code used in this tutorial, along with some auxiliary scripts
Sample project cucumber-java-skeleton

Official Cucumber documentation

Cucumber installation instructions for Java

Cucumber API

Cucumber expressions

Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
Automated Tests (Import/Export)

Exporting Cucumber Tests - REST


https://docs.getxray.app/pages/viewpage.action?pageId=64855144#TestinginBDDwithGherkinbasedframeworks(e.g.Cucumber)-Commonproblems
https://github.com/bitcoder/cucumber-java-calc
https://github.com/cucumber/cucumber-java-skeleton
https://cucumber.io/docs/cucumber/
https://cucumber.io/docs/installation/java/
https://cucumber.io/docs/cucumber/api/
https://cucumber.io/docs/cucumber/cucumber-expressions/
https://docs.getxray.app/pages/viewpage.action?pageId=64855144
https://docs.getxray.app/pages/viewpage.action?pageId=64852821
https://docs.getxray.app/display/XRAY420/Exporting+Cucumber+Tests+-+REST

	Testing using Cucumber in Java

