Integration with GitLab

GitLab is a well-known CI/CD tool available on-premises and as SaaS.
Xray does not provide yet a plugin for GitLab. However, it is easy to setup GitLab in order to integrate it with Xray.

Since Xray provides a full REST API, you may interact with Xray, for submitting results for example.

® JUnit example

® Cucumber example
© Standard workflow (Xray as master)
© VCS workflow (Git as master)

JUnit example

In this scenario, we want to get visibility of the automated test results from some tests implemented in Java, using the JUnit framework.

This recipe could also be applied for other frameworks such as NUnit or Robot.

We need to setup a Git repository containing the code along with the configuration for GitLab build process.

The tests are implemented in a JUnit class as follows.

CalcTest.java

package com xpand. j ava;

inport org.junit.After;
import org.junit.Before;
import org.junit. Test;

import static org.hantrest. CoreMatchers.is;
inport static org.junit.Assert.assertThat;

public class Cal cTest {

@efore
public void setUp() throws Exception {

}

@fter
public void tearDown() throws Exception {

}

@est

public void CanAddNunbers()

{
assert That (Cal cul ator. Add(1, 1), is(2));
assert That (Cal cul ator. Add(-1, 1), is(0));

@est

public void CanSubtract ()

{
assert That (Cal cul ator. Subtract (1, 1), is(0));
assert That (Cal cul ator. Subtract (-1, -1), is(0));
assert That (Cal cul ator. Subtract (100, 5), is(95));

@est

public void CanMil tiply()

{
assertThat (Cal cul ator. Mul tiply(1l, 1), is(1));
assertThat (Cal cul ator. Mul tiply(-1, -1), is(1));
assert That (Cal cul ator. Mul ti pl y(100, 5), is(500));

public void CanDi vide()

{
assertThat (Cal cul ator. Divide(1, 1), is(1));
assertThat (Cal cul ator. Divide(-1, -1), is(1));
assert That (Cal cul ator. Di vi de(100, 5), is(20));

}

@est

public void CanDoStuff ()

{
assertThat (true, is(true));

}

The GitLab configuration file . gi t | ab- ci . yri contains the definition of the build steps, including running the automated tests and submitting the results.

.gitlab-ci.yml

Use Maven 3.5 and JDK8
i mge: maven: 3. 5-j dk-8

vari abl es:

This will supress any downl oad for dependencies and plugins or upload nessages which would clutter the
consol e 1 0g.

“showDateTinme® will show the passed time in nilliseconds. You need to specify "--batch-node’ to nake this
wor k.

MAVEN_OPTS: "-Dmaven. repo. | ocal =.n2/repository -Dorg.slf4j.sinpleLogger.!|og.org.apache. maven.cli.transfer.
S| f 4) MavenTr ansf er Li st ener =\WWARN - Dor g. sl f 4] . si npl eLogger . showDat eTi ne=true -Dj ava. awt . headl ess=t rue"

As of Maven 3.3.0 instead of this you may define these options in *.nvn/maven.config so the sane config is
used

when running fromthe command |ine.

“install AtEnd” and "“depl oyAtEnd are only effective with recent version of the correspondi ng pl ugins.

MAVEN_CLI _OPTS: "--batch-nbde --errors --fail-at-end --show version -Dinstall At End=true -Ddepl oyAt End=t rue"

Cache downl oaded dependenci es and pl ugi ns between builds.
To keep cache across branches add 'key: "$Cl _JOB_REF_NAME"'
cache:
pat hs:
- .nR/repository

maven_bui | d:

script:
- echo "building ny anazing repo..."
- nvn test

- 'curl -H"Content-Type: nmultipart/formdata” -u $jira_user:$jira_password -F "file=@arget/surefire-
reports/ TEST-com xpand. j ava. Cal cTest.xm " "$jira_server_url/rest/raven/1.0/inport/execution/junit?
proj ect Key=CALC"'

- echo "done"

In order to submit those results, we'll just need to invoke the REST API (as detailed in Import Execution Results - REST).

However, we do not want to have the JIRA credentials hardcoded in GitLab's configuration file. Therefore, we'll use some secret variables defined in
GitLab project settings.

@ Please note

The user present in the configuration below must exist in the JIRA instance and have permission to Create Test and Test Execution Issues

https://docs.getxray.app/display/XRAY420/Import+Execution+Results+-+REST

& GitLab Projects v Groups Activity Milestones Snippets €3+~ Thisproject Search

General pipelines settings
J java-junit-calc
Update your CI/CD configuration, like job timeout or Auto DevOps.

& Overview

Runners settings
® Repository Register and see your runners for this project.

) Registry

Secret variables @

) Issues 0
D Variables are applied to environments via the runner. They can be protected by only exposing them to protected branches or tags.

™ 3 ; 5 You can use variables for passwords, secret keys, or whatever you want.
erge Requests

jira_password L — Protected e
® ci/cp
O jira_server_url FRRckR kR Protected [-)
Wiki
:) jira_user L — Protected e
& Snippets
Input variable ke Input variable value Protected
£ Settings P Y %
Members
Integrations Pipeline triggers
Repositor Triggers can force a specific branch or tag to get rebuilt with an API call. These tokens will impersonate their associated user
P y including their access to projects and their project permissions.

In. gitlab-ci.ynla"step" must be included in the maven_build section, that will use "curl" in order to submit the results to the REST API.

curl -H "Content-Type: nultipart/formdata" -u $jira_user:$jira_password -F "file=@arget/surefire-reports/ TEST-
com xpand. j ava. Cal cTest.xm " "$jira_server_url/rest/raven/ 1. 0/inport/execution/junit?projectKey=CALC'

We're using "curl" utility that comes in Unix based OS'es but you can easily use another tool to make the HTTP request; however, “curl" is provided in the
container used by GitLab.

Cucumber example

Standard workflow (Xray as master)

In this scenario, we are managing the specification of Cucumber Scenarios/Scenario Outline(s) based tests in Jira, using Xray, as detailed in the "standard
workflow" mentioned in Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

Then we need to extract this specification from Jira (i.e. generate related Cucumber .feature files), and run it in GitLab against the code that actually
implements each step that are part of those scenarios.

Finally, we can then submit the results back to JIRA and they'll be reflected on the related entities.

The GitLab configuration file . gi t | ab- ci . ymi contains the definition of the build steps, including extracting the cucumber specification from Xray, running
the automated tests and submitting back the results.

https://docs.getxray.app/pages/viewpage.action?pageId=64855144

.gitlab-ci.yml
i mge: "ruby:2.6"

test:

script:

- apt-get update -qq

- apt-get install unzip

- geminstall cucunber

- geminstall rspec-expectations

- 'curl -u $jira_user:$jira_password "$jira_server_url/rest/raven/ 1.0/ export/test?keys=$cucunber _keys" -o
features/features. zi p'

- nkdir -p features

- 'rm-f features/*.feature'

- unzip -o features/features.zip -d features/

- cucunber -x -f json -o data.json

- 'curl -H"Content-Type: application/json" -u $jira_user:$jira_password --data @lata.json "$jira_server_url
/rest/raven/ 1. 0/inport/execution/cucunber"'

- echo "done"

In this example, we're using a variable cucumber_keys defined in the CI/CD project level settings in GitLab. This variable contains one or more keys of
the issues that will be used as source data for generating the Cucumber .feature files; it can be the key(s) of Test Plan(s), Test Execution(s), Test(s),
requirement(s). For more info, please see: Exporting Cucumber Tests - REST.

VCS workflow (Git as master)

In this scenario, we are managing (i.e. editing) the specification of Cucumber Scenarios/Scenario Outline(s) based tests outside Jira, as detailed in the
"VCS workflow" mentioned in Testing in BDD with Gherkin based frameworks (e.g. Cucumber).

The GitLab configuration file . gi t | ab- ci . yni contains the definition of the build steps, including synchronizing the Scenarios/Backgrounds to Xray,
extracting the cucumber specification from Xray, running the automated tests and submitting back the results.
.gitlab-ci.yml

i mage: "ruby:2.6"

test:
script:
- apt-get update -qq
- apt-get -y install unzip zip
- geminstall cucunber
- geminstall rspec-expectations
- 'cd features; zip -R features.zip "*.feature"; cd ..; curl -H"Content-Type: nultipart/formdata" -u

$jira_user:$jira_password -F "file=@eatures/features.zip" "$jira_server_url/rest/raven/1.0/inport/feature?
proj ect Key=CALC" '

- nkdir -p features
- 'rm-f features/*.feature'

- 'curl -u $jira_user:$jira_password "$jira_server_url/rest/raven/ 1.0/ export/test?filter=$filter_id" -o
features/features. zi p'

- unzip -o features/features.zip -d features/

- cucunber -x -f json -o data.json || true

- 'curl -H "Content-Type: application/json" -u $jira_user:$jira_password --data @lata.json "$jira_server_url
/rest/raven/ 1. 0/inport/execution/cucunber"'

- echo "done"

In this example, we're using a variable filter_id defined in the CI/CD project level settings in GitLab. This variable contains the id of the Jira issues
based filter that will be used as source data for generating the Cucumber .feature files; it can be the key(s) of Test Plan(s), Test Execution(s), Test(s),
requirement(s). For more info, please see: Exporting Cucumber Tests - REST.

https://docs.getxray.app/display/XRAY420/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/pages/viewpage.action?pageId=64855144
https://docs.getxray.app/display/XRAY420/Exporting+Cucumber+Tests+-+REST

	Integration with GitLab

