Exporting a Test Execution

Document Generator allows you to get following data from the Xray Test Execution:

® Overall Execution Status
® [terating Test Runs associated with a Test Execution
© Exporting Test Runs custom fields
O lterating Pre-Conditions associated with a Test Run
O lterating Attachments associated with a Test Run
O lterating Evidences associated with a Test Run
© lterating Defects associated with a Test Run
o Iterating Automated Test details associated with a Test Run
O lterating Manual Test Step details associated with a Test Run
O lterating Manual Test Step Attachments associated with a Test Run
© Ilterating Manual Test Step Defects associated with a Test Run
o Iterating Manual Test Step Evidences associated with a Test Run
O Exporting Test Run Activity

(D If a Test Execution contains a lot of information, it can decrease Jira performance

Overall Execution Status

Export the Overall Execution Status with name and percentage for each Test Execution Status

${Overal | Execution Status}

You can print the status of the Test Execution by using the following notation:

% per Status Number of Tests per Status

${Overall Execution Status.NameOfStatus} = ${Overall Execution Status.NameOfStatus.Count}

See the real example:

Expand to see the examples on sample code of a Test Execution details

Todo: ${Overall Execution Status.TODO % (${Overall Execution Status. TODO. Count})

Fail: ${Overal|l Execution Status.FAIL}% (${Overall Execution Status.FAIL.Count})

Pass: ${Overal| Execution Status.PASS}% (${Overal|l Execution Status.PASS. Count})

Executing: ${Overall Execution Status. EXECUTI NG % (${Overal | Execution Status. EXECUTI NG Count})
Aborted: ${Overall Execution Status. ABORTED}% (${Overal| Execution Status. ABORTED. Count})

Iterating Test Runs associated with a Test Execution
Document Generator allows rendering of all the Test Tuns associated with a Test Execution.
Definition:
$ {TestRuns[n].Field}
n is the index of the Test Run, starting from 0. The field TestRunsCount was created in order to give the total number of Test Runs.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
Execution Status: ${TestRuns[n].Execution Status}
Assi gneel D: ${ Assi gneel d}
Rank: ${Test Runs[n]. Rank}
Executed By: ${TestRuns[n].Executed By}
Started On: ${TestRuns[n].Started On}
Fi ni shed On: ${Test Runs[n]. Fi ni shed On}
Comment : ${w ki : Test Runs[n] . Cooment }
Execution Defects Count: ${TestRuns[n].Executi onDefectsCount}
Test Steps Defects Count: ${TestRuns[n]. Test StepsDef ectsCount}
Evi dences Count: ${TestRuns[n].Executi onEvi dencesCount}
#{ end}

Exporting Test Runs custom fields
To export Test Runs Custom Fields you just have to defined the placeholder with the name of you custom field.

Example: Image that you have a custom field called "Run CF". To get the value printed on you document you just have to use the following placeholder:

#{for testruns}
The Run CF value is: ${TestRuns[n].Run CF}
#{ end}

@ If your custom field type is a Number, Data or Date Time you can use formatting functions.

Iterating Pre-Conditions associated with a Test Run
Document Generator allows rendering of the Pre-Conditions associated with a Test from a Test Run.
Definition:

$ {TestRuns[n].PreCondition.Field}

n is the index of Test Runs, starting from 0. The fields available for Pre-Conditions are:

Key

Summary
Conditions
Pre-Condition Type

Expand to see the example on sample code

#l terating over Test Runs

#{for testruns}
#Getting data from Pre-Condition
Pre-Condition Key: ${TestRuns[n].PreCondition.Key}
Pre-Condi tion Sumrary: ${TestRuns[n].PreCondition. Summary}
Condi ti on: ${ Test Runs[n] . PreCondi ti on. Condi ti ons}
Type: ${TestRuns[n].PreCondition.Pre-Condition Type}

#{ end}

Iterating Attachments associated with a Test Run

Document Generator allows rendering of all the Attachments associated with a Test Run.

https://docs.getxray.app/display/XRAY430/Helper+Functions

Definition:

$ {TestRuns[n].AttachmentsCount[sa]}

sa is the index of the Attachments, starting from 0. The field AttachmentsCount was created in order to give the total number of Attachments of a Test

Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs

#{for testruns}

#lterating Test Attachnents
#{for sa=Test Runs[n].AttachnentsCount}

#{ end}
#{ end}

Nanme: ${Test Runs[n]. Attachnents[sa]. Nane}

Aut hor: ${Test Runs[n]. Attachnent s[sa] . Aut hor}
ID: ${TestRuns[n].Attachnents[sa].|D}

Si ze: ${TestRuns[n].Attachnments[sa]. Size}

‘ @ If a Test Execution contains a lot of information, it can decrease Jira performance

Iterating Evidences associated with a Test Run

Document Generator allows rendering of all the Evidences associated with a Test Run.

Definition:

$ {TestRuns[n].ExecutionEvidences[d]}

d is the index of the Evidences, starting from 0. The field ExecutionEvidencesCount was created in order to give the total number of Evidences of a Test

Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over
#{for testruns}

Test Runs

#lterating over Evidences
#{for d=Test Runs[n].Executi onEvi dencesCount}

[d].FileURL}}

#{ end}
#{ end}

Id: ${Test Runs[n].ExecutionEvi dences[d].|d}

Name: ${ Test Runs[n]. Executi onEvi dences[d] . Name}

Aut hor: ${Test Runs[n] . Executi onEvi dences[d] . Aut hor}

Link: @title=${Test Runs[n]. ExecutionEvi dences[d].FileURL}| href=%{Test Runs[n]. Executi onEvi dences

Si ze: ${TestRuns[n].ExecutionEvi dences[d].Si ze}

Created: ${TestRuns[n].ExecutionEvi dences[d]. Created}

HumanReadabl eSi ze: ${Test Runs[n] . Executi onEvi dences|[d] . HumanReadabl eSi ze}
M meType: ${Test Runs[n]. Executi onEvi dences[d]. M neType}

Evi dence: ${ Test Runs[n] . Execut i onEvi dences[d] . Evi dence}

Iterating Defects associated with a Test Run
Document Generator allows rendering of all the defects associated with a Test Run.

Definition:
$ {TestRuns[n].ExecutionDefects[e]}

e is the index of the defects, starting from 0. The field ExecutionDefectsCount was created in order to give the total number of Defects of a Test Run.
Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#lterating over defects fromeach test run
#{for e=Test Runs[n].Executi onDef ect sCount}
Link: @title=${Test Runs[n].ExecutionDefects[e].Key}|href=${BaseURL}/browse/ ${ Test Runs[n] .
Executi onDef ect s[e] . Key}}
Summary: ${ Test Runs[n].Executi onDef ects[e]. Summary}
#{ end}
#{ end}

Iterating Automated Test details associated with a Test Run
Document Generator allows rendering of the Details from Automated Tests associated with a Test Run.

Definition:

Cucumber Scenario: $ {TestRuns[n].Cucumber Scenario}

Test Definition: $ {TestRuns[n].Generic Test Definition}

n is the index of the Test Runs, starting from 0. The fields Cucumber Scenario/Generic Test Definition were created in order to give the step details of
Automated Tests of a Test Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#l terating over Test Runs
#{for testruns}
#Test Run Step Details
Cucunber Scenario: ${TestRuns[n]. Cucunber Scenari o}
Test Definition: ${TestRuns[n].Generic Test Definition}
#{ end}

‘ @ If a Test Execution contains a lot of information, it can decrease Jira performance

Iterating Manual Test Step details associated with a Test Run
Document Generator allows rendering of the Details from Manual Tests associated with a Test Run.
Definition:

$ {TestRuns[n].TestSteps[r]}

r is the index of the Test Steps, starting from 0. The field TestStepsCount was created in order to give the step details of Manual Tests of a Test Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#l terating over Test Runs
#{for testruns}
#lterating over Manual Test Steps from Test Run
#{for r=TestRuns[n]. Test St epsCount}
St epNunber : ${ Test Runs[n] . Test Steps[r]. St epNunber}
Action: ${wiki:TestRuns[n]. TestSteps[r].Action}
Data: ${wi ki:Test Runs[n]. Test Steps[r]. Data}
Expected Result: ${wi ki: Test Runs[n]. Test Steps[r].ExpectedResult}
Comment : ${wi ki : Test Runs[n] . Test Steps[r]. Corment }
St at us: ${ Test Runs[n] . Test Steps[r]. Stat us}
Actual Result: ${w ki:TestRuns[n].TestSteps[r].Actual Result}
#{ end}
#{ end}

Iterating Manual Test Step Attachments associated with a Test Run
Document Generator allows rendering of the Attachments from Manual Tests Steps associated with a Test Run.
Definition:

$ {TestRuns[n].TestSteps[r]. Attachments[sa]}

sa is the index of the Test Step Attachments, starting from 0. The field AttachmentsCount was created in order to give the step attachments of Manual
Tests of a Test Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#lterating over Manual Test Steps from Test Run
#{for r=TestRuns[n]. Test St epsCount}
#l terating over Test Step Attachnents
#{for sa=TestRuns[n].TestSteps[r].AttachnmentsCount}
Nanme: {TestRuns[n].TestSteps[r].Attachments[sa].Nane}
Aut hor: {TestRuns[n]. TestSteps[r].Attachnents[sa]. Aut hor}
Link: {title={TestRuns[n].TestSteps[r].Attachments[sa].FileURL}|href={TestRuns[n].
Test Steps[r].Attachnents[sa].Fil eURL}}
Si ze: {TestRuns[n].TestSteps[r].Attachnments[sa].Size}
#{ end}
#{ end}
#{ end}

@ If a Test Execution contains a lot of information, it can decrease Jira performance

Iterating Manual Test Step Defects associated with a Test Run
Document Generator allows rendering of the Defects from Manual Tests Steps associated with a Test Run.

Definition:

$ {TestRuns[n].TestSteps[r].Defects[dc]}

dc is the index of the Test Step Defects, starting from 0. The field DefectsCount was created in order to give the step defects of Manual Tests of a Test
Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#lterating over Manual Test Steps from Test Run
#{for r=TestRRuns[n]. Test St epsCount}
#l terating over Test Step Defects
#{for dc=Test Runs[n]. Test Steps[r]. DefectsCount}
Link: @title=${TestRuns[n]. TestSteps[r].Defects[dc].Key}|href={BaseURL}/browse/
{Test Runs[n] . Test Steps[r] . Def ect s[dc] . Key}}
Summary: ${w ki : Test Runs[n] . Test Steps[r] . Def ect s[dc] . Sumrary}
#{ end}
#{ end}
#{ end}

Iterating Manual Test Step Evidences associated with a Test Run
Document Generator allows rendering of the Evidences from Manual Tests Steps associated with a Test Run.

Definition:
$ {TestRuns|[n].TestSteps[r].Evidences[e]}

e is the index of the Test Step Evidences, starting from 0. The field EvidencesCount was created in order to give the step evidences of Manual Tests of a
Test Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#lterating over Manual Test Steps from Test Run
#{for r=TestRuns[n]. Test St epsCount}
#l terating over Test Step Evidences
#{for e=TestRuns[n]. Test Steps[r].Evi dencesCount}
Narme: ${ Test Runs[n]. Test Steps[r]. Evi dences[e] . Nane}
Aut hor: ${TestRuns[n]. Test Steps[r]. Evi dences[e] . Aut hor}
Link: @title=${TestRuns[n].TestSteps[r].Evidences[e].FileURL}|href=${Test Runs[n].
Test Steps[r]. Evidences[e].Fil eURL}}
Si ze: ${TestRuns[n].TestSteps[r]. Evidences[e]. Size}
Created: ${TestRuns[n].TestSteps[r].Evidences[e].Created}
HumanReadabl eSi ze: ${Test Runs[n]. Test Steps[r]. Evi dences[e]. HumanReadabl eSi ze}
M neType: ${TestRuns[n]. Test Steps[r]. Evidences[e].M neType}
Evi dence: ${ Test Runs[n] . Test Steps[r] . Evi dences[e] . Evi dence}
#{ end}

#{ end}
#{ end}

@ If you want to export the images, for example ${TestRuns[n].ExecutionEvidences[d].FileURL} you can check here for instructions on how to do it.

http://confluence.xpand-addons.com/display/XPORTER/Functions#Functions-ImageLoader

Exporting Test Run Activity
Document Generator allows export all the activity of a Test Run.
Definition:

$ {TestRuns[n].ActivityEntries[ac]}

ac is the index of the Activity entry, starting from 0. The field ActivityEntriesCount was created in order to give the Activity entry of a Test Run.

Example:

Expand to see the example on sample code

#{for testruns}

#{for d=TestRuns[n].ActivityEntriesCount}

Action: ${TestRuns[n].ActivityEntries[d].Action}

Aut hor: ${TestRuns[n]. ActivityEntries[d].Author}

Created at: ${dateformat("dd-MVyyyy HH nm ss"): Test Runs[n]. ActivityEntries[d].Created}
Changes:

#{for ch=TestRuns[n].ActivityEntries[d].ActivityltensCount}

Field: ${TestRuns[n].ActivityEntries[d].Activityltens[ch].Field}

A dVal ue: ${TestRuns[n].ActivityEntries[d].Changedltens[ch].d dVal ue}

Newval ue: ${Test Runs[n]. ActivityEntries[d].Changedltens[ch].Newal ue}

#{ end}
#{ end}
#{ end}

	Exporting a Test Execution

