Exporting a Test

Document Generator allows you to get following data from the Xray Test:

® Test Status
® Test Repository path
® |[terating over Test Steps
© Manual Test Steps
© Manual Test Steps Attachments
© Manual Test Steps Custom Fields
Pre-Conditions associated with a Test
Requirements associated with a Test
Test Plans associated with a Test
Test Runs associated with a Test
© Test Execution from a Test Run associated with Test
© Exporting Test Runs custom fields
O Exporting Parameterized Tests from a Test Run

Test Status

To get the status of the Test printed on the document you just need to put the following placeholder in your template:

${ Test RunSt at us}

Test Repository path

To get the path of the Test from the Test Repository Board printed on the document you just need to put the following placeholder in your template:

${ Test Reposi t or yPat h}

Iterating over Test Steps

Manual Test Steps

Definition:
$ {TestSteps[n].Field}

n is the index of Test Step, starting from 0. The field TestStepsCount was created in order to give the total number of Test Steps. The fields available for
Test Steps are:

StepNumber
Action

Data
ExpectedResult

Expand to see the example on sample code

#{for teststeps}

${ Test St eps[n] . St epNunber}

${ Test St eps[n] . Acti on}

${ Test St eps[n] . Dat a}

${ Test St eps[n] . Expect edResul t}
#{ end}

Manual Test Steps Attachments

Document Generator allows rendering all Attachments of Manual Test Steps of a Test.

Definition:
$ {TestSteps[n].Attachments[m].Field}

n is the index of Test Step and m is the index of the Attachment. The field AttachmentsCount was created in order to give the total number of
Attachments. The fields available for Test Step Attachments are:

ID

Name

Author
AuthorFullName
Created

Size
HumanReadableSize
MimeType

FileURL

Expand to see the example on sample code

#{for teststeps}
#{for mrTest St eps[n]. Attachnment sCount}
${ Test Steps[n]. Attachments[ni.| D}
${ Test St eps[n] . Att achment s[nj . Narme}
${Test Steps[n]. Attachment s[ni. Aut hor}
${Test Steps[n]. Attachnment s[nj . Aut hor Ful | Nare}
${ Test Steps[n] . Attachment s[nj . Cr eat ed}
${Test Steps[n]. Attachments[ni. Si ze}
${Test Steps[n] . Attachnent s[n] . HumanReadabl eSi ze}
${ Test Steps[n] . Attachnents[n]. M meType}
${ Test Steps[n]. Attachments[nj.Fi | eURL}
#{ end}
#{ end}

Manual Test Steps Custom Fields
To export Test Steps Custom Fields you just have to define the placeholder with the name of your custom field.

Example: You have a custom field called "Run CF". To get the value printed on your document you just have to use the following placeholder:

#lterating over Test Runs
#{for teststeps}

Run CF: ${TestSteps[n].Run CF}
#{ end}

@ If your custom field type is a Number, Data, or Date Time you can use formatting functions.

Pre-Conditions associated with a Test
Document Generator allows rendering of all the Pre-Conditions associated with a Test.
Definition:

$ {PreConditions[n].Field}

n is the index of the Pre-Condition, starting from 0. The field PreConditionsCount or PreconditionsCount was created in order to give the total number
of Pre-Conditions.

Since Pre-Condition is a Jira Issue, you can render all the normal mappings which you are used to.

Example:

https://docs.getxray.app/display/XRAY600/Helper+Functions

Expand to see the example on sample code

#{for preconditions}
${ PreCondi ti ons[n] . Key}
${ PreCondi ti ons[n] . Summar y}
${ PreCondi ti ons[n]. Descri ption}
${PreCondi ti ons[n].Pre-Condition Type}
${ PreCondi ti ons[n]. Conditions}

#{ end}

#{for j=PreConditionsCount}
${PreCondi tions[j].Key}
${ PreCondi tions[j].Summary}
${PreCondi tions[j].Description}
${PreConditions[j].Pre-Condition Type}
${PreCondi tions[j]. Conditions}

#{ end}

Requirements associated with a Test

You can print all the Requirements associated with a Test using an Xray Enhanced querying JQL Function, where you input the given Test Key:

JQL Function:
testRequirements('${Key}')

In order to give the total of Requirements associated with a given Test, you can use the following JQL Count statement, where you input the given Test
Key:

${jglcount:testRequirements(‘${Key}")}

n is the index of the Pre-Condition, starting from 0. The field PreConditionsCount was created in order to give the total number of Pre-Conditions.

Since a Requirement is a Jira Issue, you can render all the normal mappings which you are used to.

Example:

Expand to see the example on sample code

#{for k=JQLIssuesCount | cl ause=key in testRequirements(' ${Key}')}
${IQLI ssues[k] . Key}
${JIQLI ssues[k] . Summary}
${IQLI ssues[k] . Descri ption}

#{ end}

You can also Iterate over all the Requirements associated with a Test while iterating over all Tests of a Test Set.

https://confluence.xpand-addons.com/display/XRAY/Enhanced+querying+with+JQL

Expand to see the example on sample code

#{for tests}
${ Test s[n] . Key}
${ Test s[n] . Surmar y}
#{for k=JQLI ssuesCount|cl ause=key in testRequirenents(' Tests[n].Key')}
${ Test s[n] . JQLI ssues[K] . Key}
${Tests[n].JQLI ssues[Kk]. Summary}
${ Tests[n].JQLI ssues[Kk]. Description}
#{ end}
#{ end}

Test Plans associated with a Test
Definition:
$ {TestPlans[n].Field}

n is the index of the Test Plan, starting from 0. The field TestPlansCount was created in order to give the total number of Test Plans.
Since a Test Plan is a Jira Issue, you can render all the normal mappings which you are used to.

Example:

Expand to see the example on sample code

#{for testPlans}

${ Test Pl ans[n] . Key}

${ Test Pl ans[n] . Sunmary}

${ Test Pl ans[n] . Descri ption}
#{ end}

Test Runs associated with a Test
Definition:
$ {TestRuns[n].Field}

n is the index of the Test Run, starting from 0. The field TestRunsCount was created in order to give the total number of Test Runs.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
Execution Status: ${TestRuns[n].Execution Status}
Assi gneel D: ${ Assi gneel d}
Rank: ${Test Runs[n]. Rank}
Execut ed By: ${TestRuns[n].Executed By}
Started On: ${TestRuns[n].Started On}
Fi ni shed On: ${Test Runs[n]. Fi ni shed On}
Comment: ${wi ki : Test Runs[n] . Corment }
Execution Defects Count: ${TestRuns[n].ExecutionDefectsCount}
Test St eps Defects Count: ${Test Runs[n]. Test St epsDef ect sCount }
Evi dences Count: ${TestRuns[n]. Executi onEvi dencesCount}
#{ end}

Test Execution from a Test Run associated with Test

It is possible to access Test Execution information by iterating over tests and their Test Runs. The notation is:

Expand to see the example on sample code

#{for tests}
${ Test s[n] . Key}
#{for c=Tests[n].TestRunsCount}
${ Test s[n]. Test Runs[c] . Execut ed By}
${Test s[n]. Test Runs[c]. PreCondi tion. Key}

${ Test s[n]. Test Runs[c] . Test Execut i on. Key}
${Tests[n]. Test Runs[c] . Test Executi on. Sumrary}
${Tests[n]. Test Runs[c]. Test Executi on. Descri pti on}

Exporting Test Runs custom fields
To export Test Runs Custom Fields you just have to define the placeholder with the name of your custom field.

Example: Image that you have a custom field called "Run CF". To get the value printed on you document you just have to use the following placeholder:

#{for testruns}
The Run CF value is: ${TestRuns[n].Run CF}
#{ end}

@ If your custom field type is a Number, Data or Date Time you can use formatting functions.

Exporting Parameterized Tests from a Test Run

To export all this data, we first need to execute the test run. If we change any data, we need to return to the Execution Page and merge it with the new
data.

Fields Description
IsDataDriven Returns "true" if the current test run is data-driven; otherwise, it returns "false"

Iterations Overall Execution Status.STATUS.Percentage = The percentage of STATUS in the test run iterations

IterationsOverallExecutionStatus List of all the statuses in the current test run iteration and their percentages
IterationsOverallExecutionStatus.STATUS.Count The number of STATUS in the test run iterations

Parameters List of the parameters from each test run iteration

ParametersCount Total of Parameters declared in Dataset

@ Data-driven

The field IsDataDriven is going to return TRUE only if the test run has more than one iteration.

Exporting Test Runs Parameters from a Test
For each Test Run Parameter you can export the following fields:

* Key
® Value

Below you can find an example of how to iterate over the list of Test Run Parameters associated with a Test.

https://docs.getxray.app/display/XRAY600/Helper+Functions

Some mappings we can export from Test Runs Parameters

/] lterating each test run
#{for testruns}
/] lterating over paraneters for each test run
Paraneters Total : ${TestRuns[n]. ParanetersCount}
#{for mrTest Runs[n]. Par anet er sCount}
Key: ${TestRuns[n].Paraneters[ni.Key}
Val ue: ${Test Runs[n]. Paraneters[ni. Val ue}
#{ end}
#{ end}

Exporting Test Runs lterations from a Test
For each Test Run Iteration you can export the following fields:

Overall Execution Status

Data from Test Run lterations
Parameters from Test Run lterations
PreConditions from Test Run Iterations
Test steps from Test Run Iterations

Below you can find an example of how to iterate over the list of Test Run lterations associated with a Test.

Some mappings we can export from Test Run Iterations

/'l lterating each test run
#{for testruns}
| sDat abri ven: ${TestRuns[n].|sDataDriven}

/1 lterations Overall Execution Status (percentage + total of testes per status)

List of Statuses: ${TestRuns[n].Iterations Overall Execution Status}

TO DO ${TestRuns[n].lterations Overall Execution Status.TODO % - ${TestRuns[n].lterations Overall
Execution Status. TODO. Count}

EXECUTI NG ${TestRuns[n].lterations Overall Execution Status.EXECUTING % - ${TestRuns[n].lterations Overall
Execution Status. EXECUTI NG Count }

PASSED: ${TestRuns[n].lterations Overall Execution Status.PASS}% - ${TestRuns[n].lterations Overall
Executi on Status. PASS. Count }

FAI LED: ${TestRuns[n].lterations Overall Execution Status.FAIL}%- ${TestRuns[n].Iterations Overall
Execution Status. FAI L. Count}

ABORTED: ${TestRuns[n].lterations Overall Execution Status. ABORTED}% - ${TestRuns[n].Iterations Overall
Execution Status. ABORTED. Count }

/] lterating over test runs iterations
Total of Iterations froma Test Run: ${TestRuns[n].IterationsCount}
#{for mrTest Runs[n].lterationsCount}

Narme: ${TestRuns[n].lterations[ni.Nanme}

Status: ${TestRuns[n].lterations[ni.Status}

Paraneters: ${TestRuns[n].lterations[n]. Paraneters}

/] lterating over paranmeters for each test run iteration
Paraneters Total: ${TestRuns[n].Iterations[ni.ParanetersCount}
#{for | =TestRuns[n].Iterations[ni.ParanetersCount}

Key: ${TestRuns[n].lterations[n].Parameters[l|].Key}

Val ue: ${TestRuns[n].lterations[n].Paraneters[l]. Val ue}
#{ end}

/1 lterating over preconditions for each test run iteration
Preconditions Total: ${TestRuns[n].lterations[ni.PreConditionsCount}
#{for | =TestRuns[n].lterations[ni.PreConditionsCount}
Key: ${TestRuns[n].Iterations[nj.PreConditions[l].Key}
Summary: ${TestRuns[n].lterations[nj.PreConditions[l|].Summary}
Definition: ${TestRuns[n].lterations[n].PreConditions[l].Conditions}
Type: ${TestRuns[n].lterations[n].PreConditions[l|].Pre-Condition Type}
#{ end}

/llterating over test steps for each test run iteration
#{for i=TestRuns[n].lterations[ni.TestStepsCount}

Step Nunber: ${TestRuns[n].lterations[ni.TestSteps[i].StepNunber}

Action: ${TestRuns[n].lterations[nj.TestSteps[i].Action}

Data: ${TestRuns[n].Iterations[ni.TestSteps[i].Data}

Expected Result: ${TestRuns[n].Iterations[n].TestSteps[i].ExpectedResult}

Status: ${TestRuns[n].lterations[n].TestSteps[i].Status}

Comment: ${TestRuns[n].lterations[ni. TestSteps[i].Coment}

Actual Result: ${TestRuns[n].lterations[nj.TestSteps[i].Actual Result}

/'l Replace the placeholder text to export any customfield associated with the test step.
Step Custom Fiel d: ${TestRuns[n].Iterations[n].TestSteps[i].<Step Custom Fi el d>}

/] lteration Test Step Attachments
#{for |=TestRuns[n].Iterations[nj.TestSteps[i].AttachmentsCount}
Id: ${TestRuns[n].Iterations[n].TestSteps[i].Attachnents[I].Id}
Narme: ${TestRuns[n].lterations[nj. TestSteps[i].Attachnents[|]. Name}
Image: ${TestRuns[n].lterations[n].TestSteps[i].Attachments[|].Attachment}
FileURL: ${TestRuns[n].lterations[ni.TestSteps[i].Attachments[|].FileURL}
#{ end}
Il lteration Test Step Evidences
#{for | =TestRuns[n].lterations[nj. TestSteps[i].EvidencesCount}
Id: ${TestRuns[n].lterations[n].TestSteps[i].Evidences[I].|d}
Narme: ${TestRuns[n].lterations[n].TestSteps[i].Evidences[I|].Nane}
Evi dence: ${TestRuns[n].lterations[ni.TestSteps[i].Evidences[l].Evidence}
#{ end}
/] lteration Test Step Defects
#{for | =TestRuns[n].lterations[ni.TestSteps[i].DefectsCount}
Description: ${TestRuns[n].lterations[n].TestSteps[i].Defects[I].Description}
Id: ${TestRuns[n].lterations[nj.TestSteps[i].Defects[I|].!d}
Key: ${TestRuns[n].lterations[n].TestSteps[i].Defects[l].Key}
Summary: ${TestRuns[n].lterations[nj.TestSteps[i].Defects[|].Summary}
#{ end}
#{ end}
#{ end}
#{ end}

	Exporting a Test

