
Testing using Cypress and Cucumber in JavaScript

Overview
Requirements
Description

Using Jira and Xray as master
Using Git or other VCS as master

References

Overview
In this tutorial, we will create UI tests as Cucumber Scenario(s)/Scenario Outline(s) and use to implement the tests in JavaScript.Cypress

Requirements
nodejs
npm packages

cypress
cypress-cucumber-preprocessor
cucumber-json-merge

Description
For the purpose of this tutorial, we will use a (source-code) containing just a few pages to support login/logout kind of features; we dummy website here
aim to test precisely those features.

We need to configure Cypress to use the cypress-cucumber-preprocessor, which provides the ability to understand .feature files and also to produce
Cucumber JSON reports.

Source-code for this tutorial

Code is available in ; the repo contains some auxiliary scripts.GiHub

https://www.cypress.io/
https://robotwebdemo.herokuapp.com/
https://github.com/bitcoder/WebDemo
https://github.com/Xray-App/tutorial-java-cucumber

cypress/plugins/index.js

const cucumber = require('cypress-cucumber-preprocessor').default

/**
 * @type {Cypress.PluginConfig}
 */
module.exports = (on, config) => {
 // `on` is used to hook into various events Cypress emits
 // `config` is the resolved Cypress config
 on('file:preprocessor', cucumber())
}

In Cypress' main configuration file, define the base URL of the website under test, the regex of the files that contain the test scenarios (i.e. <...>.feature
files). Other options may be defined e.g for bypassing chromeWebSecurity, additional reporters, the ability to upload results to Cypress infrastructure in the
cloud, etc).

/cypress.json

{
 "baseUrl": "https://robotwebdemo.herokuapp.com/",
 "testFiles": "**/*.feature",
 "ignoreTestFiles": [
 "*.js",
 "*.md"
],
 "reporter": "junit",
 "reporterOptions": {
 "mochaFile": "test-results/test-output-[hash].xml"
 },
 "chromeWebSecurity": false,
 "projectId": "bfi83g"
}

Next, here is an example of the contents of package.json.

package.json

{
 "name": "cypress-cucumber-robotdemo",
 "version": "1.0.0",
 "description": "An example for Cypress and Cucumber usage using Robot login demo website",
 "main": "index.js",
 "scripts": {
 "cypress:open:local": "CYPRESS_ENV=localhost npm run cypress:open",
 "cypress:open:prod": "CYPRESS_ENV=production npm run cypress:open",
 "cypress:open": "cypress open",
 "test:local": "CYPRESS_ENV=localhost npm run test --spec 'cypress/integration/**/*.feature",
 "test:prod": "CYPRESS_ENV=production npm run test",
 "test": "cypress run --spec 'features/**/*.feature' --config integrationFolder=.",
 "test:debug:local": "CYPRESS_ENV=localhost npm run test:debug",
 "test:debug:prod": "CYPRESS_ENV=production npm run test:debug",
 "test:debug": "cypress run --headed --browser chrome --env TAGS='@e2e-test' --spec 'cypress/integration/**
/*.feature'",
 "test:pull-features": "git submodule update --remote gherkin-features && cp -rf gherkin-features/* cypress
/integration && node ./scripts/remove-old-features.js",
 "attach_screenshots": "node attach_screenshots.js"
 },
 "author": "",
 "license": "Private",
 "dependencies": {
 "axios": "^0.18.0",
 "cucumber-json-merge": "0.0.4",
 "fs-extra": "^7.0.1",
 "glob": "^7.1.3"
 },
 "devDependencies": {
 "cypress": "^5.5.0",
 "cypress-cucumber-preprocessor": "^4.0.0",
 "eslint": "^5.13.0",
 "eslint-config-airbnb-base": "^12.1.0",
 "eslint-config-prettier": "^2.9.0",
 "eslint-plugin-import": "^2.11.0",
 "eslint-plugin-prettier": "^2.6.0",
 "husky": "^1.3.1",
 "lint-staged": "^8.1.3"
 },
 "cypress-cucumber-preprocessor": {
 "nonGlobalStepDefinitions": true,
 "cucumberJson": {
 "generate": true,
 "outputFolder": "cypress/cucumber-json",
 "filePrefix": "",
 "fileSuffix": ".cucumber"
 }
 },
 "husky": {
 "hooks": {
 "pre-commit": "lint-staged"
 }
 },
 "lint-staged": {
 "*.js": [
 "eslint",
 "git add"
]
 }
}

1.

2.
3.
4.
5.
6.

Before moving into the actual implementation, we need to decide which workflow we'll use: do we want to use Xray/Jira as the master for writing the
declarative specification (i.e. the Gherkin based Scenarios), do we want to manage those outside using some editor and store them in Git, for example?or

Using Jira and Xray as master

This section assumes you will use Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature
files).

The overall flow would be something like this:

create Scenario/Scenario Outline as a Test in Jira; usually, it would be linked to an existing "requirement"/Story (i.e. created from the respective
issue screen)
implement the code related to Gherkin statements/steps and store it in Git, for example
generate .feature files based on the specification made in Jira
checkout the code from Git
run the tests in the CI
import the results back to Jira

Usually, you would start by having a Story, or similar (e.g. "requirement"), to describe the behavior of a certain feature and use that to drive your testing.

If you have it, then you can just use the "Create Test" on that issue to create the Scenario/Scenario Outline and have it automatically linked back to the
Story/"requirement."

Otherwise, you can create the Test using the standard (issue) Create action from Jira's top menu.

Learn more

Please see for an overview of the possible workflows.Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

The place that you'll use to edit the Cucumber Scenarios will affect your workflow. There are teams that prefer to edit Cucumber Scenarios in
Jira using Xray, while others prefers to edit them by writing the .feature files by hand using some IDE.

https://docs.getxray.app/pages/viewpage.action?pageId=68410215

In this case, we'll create a Cucumber Test, of Cucumber Type "Scenario."

We can fill out the Gherkin statements immediately on the Jira issue "create dialog" or we can create the Test issue first and fill out the details on the next
screen, from within the Test issue. In the latter case, we can take advantage of the built-in Gherkin editor which provides auto-complete for Gherkin steps.

After the Test is created it will impact the coverage of related "requirement," if any.

The coverage and the test results can be tracked in the "requirement" side (e.g. user story). In this case, you may see that coverage changed from being
UNCOVERED to NOTRUN (i.e. covered and with at least one test not run).

Additional tests could be created, eventually linked to the same Story or linked to another one (e.g. logout).

The related statement's code is managed outside of Jira and stored in Git, for example.

In Cypress, the test code is stored under directory, which itself contains several other directories. In this case, we've organized cypress/integration
them as follows:

cypress/integration/common: step implementation files, in JavaScript.

cypress/integration/common/login.js

import { Given, When } from 'cypress-cucumber-preprocessor/steps';
import LoginPage from '../../pages/login-page';
import LoginResultsPage from '../../pages/login-results-page';

Given(/^browser is opened to login page$/, () => {
 LoginPage.visit();
});

When('user {string} logs in with password {string}', (username, password) => {
 LoginPage.enter_username(username);
 LoginPage.enter_password(password);
 LoginPage.pressLogin();
});

Then(/^welcome page should be open$/, () => {
 LoginResultsPage.expect().toBeSuccessful();
 });

Then(/^error page should be open$/, () => {
 LoginResultsPage.expect().toBeUnsuccessful();
 });

cypress/integration/common/logout.js

import { Given, When } from 'cypress-cucumber-preprocessor/steps';
import LoginPage from '../../pages/login-page';
import LoginResultsPage from '../../pages/login-results-page';

Given(/^browser is opened to login page$/, () => {
 LoginPage.visit();
});

When('user {string} logs in with password {string}', (username, password) => {
 LoginPage.enter_username(username);
 LoginPage.enter_password(password);
 LoginPage.pressLogin();
});

Then(/^welcome page should be open$/, () => {
 LoginResultsPage.expect().toBeSuccessful();
 });

Then(/^error page should be open$/, () => {
 LoginResultsPage.expect().toBeUnsuccessful();
 });

cypress/integration/pages: abstraction of different pages, somehow based on the page-objects model

cypress/integration/pages/login.js

import LoginResultsPage from './login-results-page';

const USERNAME_FIELD = 'input[id=username_field]';
const PASSWORD_FIELD = 'input[id=password_field]';
const LOGIN_BUTTON = 'input[type=submit]';
const LOGIN_TEXT = 'LOGIN';

class LoginPage {
 static visit() {
 cy.visit('/');
 }

 static enter_username(username) {
 cy.get(USERNAME_FIELD)
 .type(username);
 }

 static enter_password(password) {
 cy.get(PASSWORD_FIELD)
 .type(password);
 }

 static pressLogin() {
 cy.get(LOGIN_BUTTON).contains(LOGIN_TEXT)
 .click();
 return new LoginResultsPage();
 }

}

export default LoginPage;

cypress/integration/pages/login-results-page.js

const RESULT_HEADER = 'h1';

class LoginResultsPage {
 static expect() {
 return {
 toBeSuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Welcome Page')
 },

 toBeUnsuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Error Page')
 },
 };
 }
 }

export default LoginResultsPage;

cypress/integration/pages/logout-results-page.js

const RESULT_HEADER = 'h1';

class LogoutResultsPage {
 static expect() {
 return {
 toBeSuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Login Page')
 },
 };
 }
 }

export default LogoutResultsPage;

cypress/integration/pages/welcome-page.js

import LoginPage from './login-page';

const LOGOUT_LINK = 'a';
const LOGOUT_TEXT = 'logout';

class WelcomePage {
 static visit() {
 cy.visit('/welcome.html');
 }

 static pressLogout() {
 cy.get(LOGOUT_LINK).contains(LOGOUT_TEXT)
 .click();
 return new LoginPage();
 }

}

export default WelcomePage;

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the UI action from within the TestExport to Cucumber
/Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

use the UI

use the REST API (more info)here

#!/bin/bash

rm -f features/*.feature
curl -u admin:admin "http://jiraserver.example.com/rest/raven/1.0/export/test?keys=CALC-7905;CALC-
7906&fz=true" -o features.zip
unzip -o features.zip -d features

use one of the available CI/CD plugins (e.g. see an example of)Integration with Jenkins

We will export the features to a new directory named on the root folder of your Cypress project (we'll need to tell Cypress to use this folder).features/

After being exported, the created .feature(s) will contain references to the Test issue key, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in .Export Cucumber Features

https://docs.getxray.app/display/XRAY500/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY500/Export+Cucumber+Features

features/1_CALC-7905.feature

@REQ_CALC-7905
Feature: As a user, I can login the application
 #As a user, I can login the application

 @TEST_CALC-7903
 Scenario Outline: Login With Invalid Credentials Should Fail
 Given browser is opened to login page
 When user "<username>" logs in with password "<password>"
 Then error page should be open

 Examples:
 | username | password |
 | invalid | mode |
 | demo | invalid |
 | invalid | invalid |
 | demo | mode |

 @TEST_CALC-7902
 Scenario: Invalid Login
 Given browser is opened to login page
 When user "dummy" logs in with password "password"
 Then error page should be open

 @TEST_CALC-7901
 Scenario: Valid Login
 Given browser is opened to login page
 When user "demo" logs in with password "mode"
 Then welcome page should be open

features/1_CALC-7906.feature

@REQ_CALC-7906
Feature: As a user, I can logout the application
 #As a user, I can logout the application

 @TEST_CALC-7904
 Scenario: Valid Logout
 Given user is on the welcome page
 When user chooses to logout
 Then login page should be open

To run the tests and produce Cucumber JSON reports(s), we can either use or command directly.npm cypress

npm run test

or instead...

node_modules/cypress/bin/cypress run --spec 'features/**/*.feature' --config integrationFolder=.

This will produce one Cucumber JSON report in directory per each .feature file.cypress/cucumber-json

The cypress-cucumber-preprocessor package, as of v4.0.0, does not produce reports containing the screenshots embedded.

However, the following script () can be used to update the previous JSON reports so that they contain the credits to the user that provided it on GitHub
screenshots of the failed tests.

attach_screenshots.js

const fs = require('fs-extra')
const path = require('path')
const chalk = require('chalk')

const cucumberJsonDir = './cypress/cucumber-json'
const cucumberReportFileMap = {}
const cucumberReportMap = {}
const jsonIndentLevel = 2
const ReportDir = './cypress/reports/cucumber-report'
const screenshotsDir = './cypress/screenshots'

getCucumberReportMaps()
addScreenshots()

//Mapping cucumber json files from the cucumber-json directory to the features
function getCucumberReportMaps() {
 const files = fs.readdirSync(cucumberJsonDir).filter(file => {
 return file.indexOf('.json') > -1
 })
 files.forEach(file => {
 const json = JSON.parse(
 fs.readFileSync(path.join(cucumberJsonDir, file))
)
 if (!json[0]) { return }
 const [feature] = json[0].uri.split('/').reverse()
 cucumberReportFileMap[feature] = file
 cucumberReportMap[feature] = json
 })
}

//Adding screenshots to the respective failed test steps in the feature files
function addScreenshots() {

 const prependPathSegment = pathSegment => location => path.join(pathSegment, location)

 const readdirPreserveRelativePath = location => fs.readdirSync(location).map(prependPathSegment(location))

 const readdirRecursive = location => readdirPreserveRelativePath(location)
 .reduce((result, currentValue) => fs.statSync(currentValue).isDirectory()
 ? result.concat(readdirRecursive(currentValue))
 : result.concat(currentValue), [])
 const screenshots = readdirRecursive(path.resolve(screenshotsDir)).filter(file => {
 return file.indexOf('.png') > -1
 })

 const featuresList = Array.from(new Set(screenshots.map(x => x.match(/[\w-_.]+\.feature/g)[0])))
 featuresList.forEach(feature => {
 screenshots.forEach(screenshot => {

 const regex = /(?<=\ --\).*?((?=\ \(example\ \#\d+\))|(?=\ \(failed\)))/g
 const [scenarioName] = screenshot.match(regex)
 console.info(chalk.blue('\n Adding screenshot to cucumber-json report for'))
 console.info(chalk.blue(scenarioName))

 console.log(featuresList)
 console.log(feature)
 console.log(cucumberReportMap)
 const myScenarios = cucumberReportMap[feature][0].elements.filter(
 e => scenarioName.includes(e.name)
)
 if (!myScenarios) { return }

https://github.com/TheBrainFamily/cypress-cucumber-preprocessor/issues/382

 let foundFailedStep = false
 myScenarios.forEach(myScenario => {
 if (foundFailedStep) {
 return
 }
 let myStep
 if (screenshot.includes('(failed)')) {
 myStep = myScenario.steps.find(
 step => step.result.status === 'failed'
)
 } else {
 myStep = myScenario.steps.find(
 step => step.name.includes('screenshot')
)
 }
 if (!myStep) {
 return
 }
 const data = fs.readFileSync(
 path.resolve(screenshot)
)
 if (data) {
 const base64Image = Buffer.from(data, 'binary').toString('base64')
 if (!myStep.embeddings) {
 myStep.embeddings = []
 myStep.embeddings.push({ data: base64Image, mime_type: 'image/png' })
 foundFailedStep = true
 }
 }
 })
 //Write JSON with screenshot back to report file.
 fs.writeFileSync(
 path.join(cucumberJsonDir, cucumberReportFileMap[feature]),
 JSON.stringify(cucumberReportMap[feature], null, jsonIndentLevel)
)
 })
 })
}

The cucumber-json-merge utility may be handy to merge the results of each feature, so they can be then submitted to Xray as one single file.

Next, is an example of a shell script with all these steps.

example of a Bash script to run the tests and produce a unified Cucumber JSON report

#!/bin/bash

rm -f cypress/cucumber-json/*
npm run test
npm run attach_screenshots
cucumber-json-merge -d cypress/cucumber-json/

After running the tests, results can be imported to Xray via the REST API, or the action within the Test Execution, or by using Import Execution Results
one of the available CI/CD plugins (e.g. see an example of).Integration with Jenkins

curl -H "Content-Type: application/json" -X POST -u admin:admin --data @"report.json" http://jiraserver.example.
com/rest/raven/1.0/import/execution/cucumber

https://github.com/bitcoder/cucumber-json-merge
https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

1.
2.

Which Cucumber endpoint/"format" to use?

To import results, you can use two different endpoints/"formats" (endpoints described in):Import Execution Results - REST

the "standard cucumber" endpoint
the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. is simpler but more restrictive: you cannot specify values for custom fields /import/execution/cucumber)
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan) if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

https://docs.getxray.app/display/XRAY500/Import+Execution+Results+-+REST

A given example can be expanded to see all Gherkin statements and, if available, it is possible to see also the attached screenshot(s).

1.
2.
3.

4.

Note: in this case, the bug was on the Scenario Outline example which was using a valid username/password combination.

Results are reflected on the covered item (e.g. Story). On the issue screen, coverage now shows that the item is OK based on the latest testing results
which can also be tracked within the Test Coverage panel bellow.

Using Git or other VCS as master

You can edit your .feature files using your IDE outside of Jira (eventually storing them in your VCS using Git, for example) alongside the remaining test
code.

In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility of them and report results against them.

The overall flow would be something like this:

look at the existing "requirement"/Story issue keys to guide your testing; keep their issue keys
specify Cucumber/Gherkin .feature files in your IDE supporting Cypress and store it in Git, for example
implement the code related to Gherkin statements/steps and store it in Git, for example

4.
5.
6.
7.
8.

import/synchronize the .feature files to Xray to provision or update corresponding Test entities
export/generate .feature files from Jira, so that they contain references to Tests and requirements in Jira
checkout the Cypress related code from Git
run the tests in the CI
import the results back to Jira

Usually, you would start by having a Story, or similar (e.g. "requirement"), to describe the behavior of a certain feature and use that to drive your testing.

Having those to guide testing, we could then move to Cypress to describe and implement the Cucumber test scenarios.

In Cypress, test related code is stored inside the directory, which itself contains several other directories. In this case, we've cypress/integration
organized them as follows:

cypress/integration/common: step implementation files, in JavaScript.

cypress/integration/common/login.js

import { Given, When } from 'cypress-cucumber-preprocessor/steps';
import LoginPage from '../../pages/login-page';
import LoginResultsPage from '../../pages/login-results-page';

Given(/^browser is opened to login page$/, () => {
 LoginPage.visit();
});

When('user {string} logs in with password {string}', (username, password) => {
 LoginPage.enter_username(username);
 LoginPage.enter_password(password);
 LoginPage.pressLogin();
});

Then(/^welcome page should be open$/, () => {
 LoginResultsPage.expect().toBeSuccessful();
 });

Then(/^error page should be open$/, () => {
 LoginResultsPage.expect().toBeUnsuccessful();
 });

cypress/integration/common/logout.js

import { Given, When } from 'cypress-cucumber-preprocessor/steps';
import LoginPage from '../../pages/login-page';
import LoginResultsPage from '../../pages/login-results-page';

Given(/^browser is opened to login page$/, () => {
 LoginPage.visit();
});

When('user {string} logs in with password {string}', (username, password) => {
 LoginPage.enter_username(username);
 LoginPage.enter_password(password);
 LoginPage.pressLogin();
});

Then(/^welcome page should be open$/, () => {
 LoginResultsPage.expect().toBeSuccessful();
 });

Then(/^error page should be open$/, () => {
 LoginResultsPage.expect().toBeUnsuccessful();
 });

cypress/integration/pages: abstraction of different pages, somehow based on the page-objects model

cypress/integration/pages/login.js

import LoginResultsPage from './login-results-page';

const USERNAME_FIELD = 'input[id=username_field]';
const PASSWORD_FIELD = 'input[id=password_field]';
const LOGIN_BUTTON = 'input[type=submit]';
const LOGIN_TEXT = 'LOGIN';

class LoginPage {
 static visit() {
 cy.visit('/');
 }

 static enter_username(username) {
 cy.get(USERNAME_FIELD)
 .type(username);
 }

 static enter_password(password) {
 cy.get(PASSWORD_FIELD)
 .type(password);
 }

 static pressLogin() {
 cy.get(LOGIN_BUTTON).contains(LOGIN_TEXT)
 .click();
 return new LoginResultsPage();
 }

}

export default LoginPage;

cypress/integration/pages/login-results-page.js

const RESULT_HEADER = 'h1';

class LoginResultsPage {
 static expect() {
 return {
 toBeSuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Welcome Page')
 },

 toBeUnsuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Error Page')
 },
 };
 }
 }

export default LoginResultsPage;

cypress/integration/pages/logout-results-page.js

const RESULT_HEADER = 'h1';

class LogoutResultsPage {
 static expect() {
 return {
 toBeSuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Login Page')
 },
 };
 }
 }

export default LogoutResultsPage;

cypress/integration/pages/welcome-page.js

import LoginPage from './login-page';

const LOGOUT_LINK = 'a';
const LOGOUT_TEXT = 'logout';

class WelcomePage {
 static visit() {
 cy.visit('/welcome.html');
 }

 static pressLogout() {
 cy.get(LOGOUT_LINK).contains(LOGOUT_TEXT)
 .click();
 return new LoginPage();
 }

}

export default WelcomePage;

cypress/integration/login: Cucumber .feature files, containing the tests as Gherkin Scenario(s)/Scenario Outline(s). Please note that
each "Feature: <..>" section should be tagged with the issue key of the corresponding "requirement"/story in Jira. You may need to add a prefix (e.
g. "REQ_") before the issue key, depending on a global Xray setting.

cypress/integration/login/login.feature

@REQ_CALC-7905
Feature: As a user, I can login the applicaiton

Scenario: Valid Login
 Given browser is opened to login page
 When user "demo" logs in with password "mode"
 Then welcome page should be open

Scenario: Invalid Login
 Given browser is opened to login page
 When user "dummy" logs in with password "password"
 Then error page should be open

Scenario Outline: Login With Invalid Credentials Should Fail
 Given browser is opened to login page
 When user "<username>" logs in with password "<password>"
 Then error page should be open

 Examples:
 | username | password |
 | invalid | mode |
 | demo | invalid |
 | invalid | invalid |

cypress/integration/login/logout.feature

@REQ_CALC-7906
Feature: As a user, I can logout the application

Scenario: Valid Logout
 Given user is on the welcome page
 When user chooses to logout
 Then login page should be open

Before running the tests in the CI environment, you need to import your .feature files to Xray/Jira; you can invoke the REST API directly or use one of the
available plugins/tutorials for CI tools.

zip -r features.zip cypress/integration/ -i *.feature
curl -H "Content-Type: multipart/form-data" -u admin:admin -F "file=@features.zip" "http://jiraserver.example.
com/rest/raven/1.0/import/feature?projectKey=CALC"

Afterwards, you can export those features out of Jira, based on some criteria so they are properly tagged with corresponding issue keys; this is important
because results need to contain these references.

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the UI action from within the TestExport to Cucumber
/Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

use the UI

Please note

Each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again then Xray can
update the existent Test and don't create any duplicated tests.

use the REST API (more info)here

#!/bin/bash

rm -f features/*.feature
curl -u admin:admin "http://jiraserver.example.com/rest/raven/1.0/export/test?keys=CALC-7905;CALC-
7906&fz=true" -o features.zip
unzip -o features.zip -d features

use one of the available CI/CD plugins (e.g. see an example of)Integration with Jenkins

For CI only purpose, we will export the features to a new temporary directory named on the root folder of your Cypress project (we'll need to features/
tell Cypress to use this folder). Please note that while implementing the tests, .feature files should be edited inside the cypress/integration/login folder, in
this case;

After being exported, the created .feature(s) will contain references to the Test issue keys, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in .Export Cucumber Features

https://docs.getxray.app/display/XRAY500/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY500/Export+Cucumber+Features

features/1_CALC-7905.feature

@REQ_CALC-7905
Feature: As a user, I can login the application
 #As a user, I can login the application

 @TEST_CALC-7903 @cypress/integration/login/login.feature
 Scenario Outline: Login With Invalid Credentials Should Fail
 Given browser is opened to login page
 When user "<username>" logs in with password "<password>"
 Then error page should be open

 Examples:
 | username | password |
 | invalid | mode |
 | demo | invalid |
 | invalid | invalid |
 | demo | mode |

 @TEST_CALC-7902 @cypress/integration/login/login.feature
 Scenario: Invalid Login
 Given browser is opened to login page
 When user "dummy" logs in with password "password"
 Then error page should be open

 @TEST_CALC-7901 @cypress/integration/login/login.feature
 Scenario: Valid Login
 Given browser is opened to login page
 When user "demo" logs in with password "mode"
 Then welcome page should be open(base)

To run the tests and produce Cucumber JSON reports(s), we can either use or command directly.npm cypress

npm run test

or instead...

node_modules/cypress/bin/cypress run --spec 'features/**/*.feature' --config integrationFolder=.

This will produce one Cucumber JSON report in directory per each .feature file.cypress/cucumber-json

The cypress-cucumber-preprocessor package, as of v4.0.0, does not produce reports containing the screenshots embedded.

However, the following script () can be used to update the previous JSON reports so that they contain the credits to the user that provided it on GitHub
screenshots of the failed tests.

attach_screenshots.js

const fs = require('fs-extra')
const path = require('path')
const chalk = require('chalk')

const cucumberJsonDir = './cypress/cucumber-json'
const cucumberReportFileMap = {}
const cucumberReportMap = {}
const jsonIndentLevel = 2

https://github.com/TheBrainFamily/cypress-cucumber-preprocessor/issues/382

const ReportDir = './cypress/reports/cucumber-report'
const screenshotsDir = './cypress/screenshots'

getCucumberReportMaps()
addScreenshots()

//Mapping cucumber json files from the cucumber-json directory to the features
function getCucumberReportMaps() {
 const files = fs.readdirSync(cucumberJsonDir).filter(file => {
 return file.indexOf('.json') > -1
 })
 files.forEach(file => {
 const json = JSON.parse(
 fs.readFileSync(path.join(cucumberJsonDir, file))
)
 if (!json[0]) { return }
 const [feature] = json[0].uri.split('/').reverse()
 cucumberReportFileMap[feature] = file
 cucumberReportMap[feature] = json
 })
}

//Adding screenshots to the respective failed test steps in the feature files
function addScreenshots() {

 const prependPathSegment = pathSegment => location => path.join(pathSegment, location)

 const readdirPreserveRelativePath = location => fs.readdirSync(location).map(prependPathSegment(location))

 const readdirRecursive = location => readdirPreserveRelativePath(location)
 .reduce((result, currentValue) => fs.statSync(currentValue).isDirectory()
 ? result.concat(readdirRecursive(currentValue))
 : result.concat(currentValue), [])
 const screenshots = readdirRecursive(path.resolve(screenshotsDir)).filter(file => {
 return file.indexOf('.png') > -1
 })

 const featuresList = Array.from(new Set(screenshots.map(x => x.match(/[\w-_.]+\.feature/g)[0])))
 featuresList.forEach(feature => {
 screenshots.forEach(screenshot => {

 const regex = /(?<=\ --\).*?((?=\ \(example\ \#\d+\))|(?=\ \(failed\)))/g
 const [scenarioName] = screenshot.match(regex)
 console.info(chalk.blue('\n Adding screenshot to cucumber-json report for'))
 console.info(chalk.blue(scenarioName))

 console.log(featuresList)
 console.log(feature)
 console.log(cucumberReportMap)
 const myScenarios = cucumberReportMap[feature][0].elements.filter(
 e => scenarioName.includes(e.name)
)
 if (!myScenarios) { return }
 let foundFailedStep = false
 myScenarios.forEach(myScenario => {
 if (foundFailedStep) {
 return
 }
 let myStep
 if (screenshot.includes('(failed)')) {
 myStep = myScenario.steps.find(
 step => step.result.status === 'failed'
)
 } else {
 myStep = myScenario.steps.find(
 step => step.name.includes('screenshot')
)
 }
 if (!myStep) {
 return
 }

 const data = fs.readFileSync(
 path.resolve(screenshot)
)
 if (data) {
 const base64Image = Buffer.from(data, 'binary').toString('base64')
 if (!myStep.embeddings) {
 myStep.embeddings = []
 myStep.embeddings.push({ data: base64Image, mime_type: 'image/png' })
 foundFailedStep = true
 }
 }
 })
 //Write JSON with screenshot back to report file.
 fs.writeFileSync(
 path.join(cucumberJsonDir, cucumberReportFileMap[feature]),
 JSON.stringify(cucumberReportMap[feature], null, jsonIndentLevel)
)
 })
 })
}

The cucumber-json-merge utility may be handy to merge the results of each feature, so they can be then submitted to Xray as one single file.

Next, is an example of a shell script with all these steps.

example of a Bash script to run the tests and produce a unified Cucumber JSON report

#!/bin/bash

rm -f cypress/cucumber-json/*
npm run test
npm run attach_screenshots
cucumber-json-merge -d cypress/cucumber-json/

After running the tests, results can be imported to Xray via the REST API, or the action within the Test Execution, or by using Import Execution Results
one of the available CI/CD plugins (e.g. see an example of).Integration with Jenkins

example of a Bash script to import results using the standard Cucumber endpoint

#!/bin/bash

curl -H "Content-Type: application/json" -X POST -u admin:admin --data @"report.json" http://jiraserver.example.
com/rest/raven/1.0/import/execution/cucumber

https://github.com/bitcoder/cucumber-json-merge
https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

1.
2.

Which Cucumber endpoint/"format" to use?

To import results, you can use two different endpoints/"formats" (endpoints described in):Import Execution Results - REST

the "standard cucumber" endpoint
the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. is simpler but more restrictive: you cannot specify values for custom fields /import/execution/cucumber)
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan) if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

https://docs.getxray.app/display/XRAY500/Import+Execution+Results+-+REST

A given example can be expanded to see all Gherkin statements and, if available, it is possible to see also the attached screenshot(s).

Note: in this case, the bug was on the Scenario Outline example which was using a valid username/password combination.

Results are reflected on the covered item (e.g. Story). On its issue screen, coverage now shows that the item is OK based on the latest testing results, that
can also be tracked within the Test Coverage panel bellow.

References
Cypress
Cypress documentation
cypress-cucumber-example
issue related to adding screenshots to the cucumber JSON report(s)

https://www.cypress.io/
https://docs.cypress.io/
https://github.com/TheBrainFamily/cypress-cucumber-example
https://github.com/TheBrainFamily/cypress-cucumber-preprocessor/issues/382

	Testing using Cypress and Cucumber in JavaScript

