Integration with GitHub

blocked URLblocked URL

GitHub is a well-known platform hosting thousands of source-code repositories.

It also provides issue tracking and basic project management capabilities.

More recently, GitHub provided the ability to automate workflows using GitHub Actions.

With GitHub Actions, it's possible to implement CI/CD directly in GitHub and reuse already available actions from GitHub Marketplace to automate steps.

An introduction to GitHub actions can be seen here.

® Main concepts
© Accessing and sharing data
® Examples
© Basic JUnit example
®* Tips
® References

Main concepts

In a nutshell, workflows are automated processes described as YAML files, stored under .github/workflows. These are usually triggered by events (e.g.
code-commit, pull-request) or can also be scheduled.

One or more workflows can be defined. Each workflow is in turn composed by one or more jobs, that can run sequentially or in parallel. A job performs a
set of sequential steps to achieve a certain goal. A step is an individual automation task; it can be either an action or simply a shell command.

An action abstracts some automation task; it can be named and versioned. Actions can be implemented directly in Javascript or as Docker containers.
GitHub also supports composite actions built of multiple inner steps.

Actions and workflows can be stored in the local repository; actions can also be published in the GitHub Marketplace.

Each time a workflow is triggered, a workflow run is created; it contains a specific context. Each job in the workflow uses a fresh virtual environment (e.g.
ubuntu-latest) sharing the same virtual file system.

Accessing and sharing data
A job can generate output variables that can be used by another job that depends on it; this is the preferred way to share data between jobs.

Another way of sharing data, especially between jobs, would be to produce and store artifact(s) in a job and obtain them in another job.

Environment variables can also be used to access some data and share them with care. Environment variables are available at workflow, job or step level.
GitHub fills out some environment variables by default.

It's also possible to access secrets defined in GitHub project settings, as environment variables or as a step input.

Examples

Basic JUnit example

In this basic example showcasing a dummy calculator, we want to get visibility of the automated test results from some tests implemented in Java, using
the JUnit framework.

G) Please note

The source code for this example is available in this GitHub repository.

https://github.githubassets.com/images/modules/open_graph/github-mark.png
https://avatars0.githubusercontent.com/u/44036562?s=200&v=4
https://github.com/features/actions
https://github.com/marketplace?type=actions
https://medium.com/@darktelecom/github-actions-powering-up-your-existing-repos-with-build-capabilities-1636b065b823
https://docs.github.com/en/free-pro-team@latest/actions/reference/workflow-syntax-for-github-actions#jobsjob_idoutputs
https://docs.github.com/en/free-pro-team@latest/actions/reference/environment-variables
https://docs.github.com/en/free-pro-team@latest/actions/reference/encrypted-secrets
https://github.com/bitcoder/tutorial-java-junit-calc

CalcTest.java

package com xpand. j ava;

inport org.junit.After;
import org.junit.Before;
import org.junit. Test;

import static org.hantrest. CoreMatchers.is;
inport static org.junit.Assert.assertThat;

public class Cal cTest {

@efore
public void setUp() throws Exception {

}

@fter
public void tearDown() throws Exception {

}

@est

public void CanAddNunbers()

{
assert That (Cal cul ator. Add(1, 1), is(2));
assert That (Cal cul ator. Add(-1, 1), is(0));

@est

public void CanSubtract ()

{
assert That (Cal cul ator. Subtract (1, 1), is(0));
assert That (Cal cul ator. Subtract (-1, -1), is(0));
assert That (Cal cul ator. Subtract (100, 5), is(95));

@est

public void CanMil tiply()

{
assertThat (Cal cul ator. Mul tiply(1l, 1), is(1));
assertThat (Cal cul ator. Mul tiply(-1, -1), is(1));
assert That (Cal cul ator. Mul ti pl y(100, 5), is(500));

public void CanDi vide()

{
assertThat (Cal cul ator. Divide(1, 1), is(1));
assertThat (Cal cul ator. Divide(-1, -1), is(1));
assert That (Cal cul ator. Di vi de(100, 5), is(20));

}

@est

public void CanDoStuff ()

{
assertThat (true, is(true));

}

To implement the continuous integration, we'll implement a specific workflow for it and store it . gi t hub/ wor kf | ows/ Cl -j i r a- onpr em ses- exanpl e.
yam .

We'll use the actions/checkout action to checkout the code from our repository to the virtual environment. This action is one of the "standard" actions
provided by GitHub (check full list here).

To compile the code, we need to use a JDK; we can use the action actions/setup-java which allows us to choose the specific Java version.

We use Maven to build and run the tests.

.github/workflows/Cl-jira-onpremises-example.yaml

nane: Cl (Jira on-prem ses exanple)
on: [push]
j obs:
bui | d:
runs-on: ubuntu-Iatest

st eps:
- uses: actions/checkout @1
- nane: Set up Java
uses: actions/setup-java@l
Wit h:
java-version: '1.8'
- nane: Cache Maven packages
uses: actions/cache@?2
W t h:
path: ~/.n2
key: ${{ runner.os }}-n2-${{ hashFiles('**/pomxm"') }}
restore-keys: ${{ runner.os }}-n2
- nane: Build with Maven
run: nvn clean conpile test --file pom xn
- nane: Subnmit results to Xray
env:
JI RA_SERVER URL: ${{ secrets.jira_server_url }}
JI RA_USERNAME: ${{ secrets.jira_usernane }}
JI RA_PASSWORD: ${{ secrets.jira_password }}
run: 'curl -H "Content-Type: nultipart/formdata" -u $J1 RA_USERNAVE: $J1 RA_PASSWORD -F "fil e=@ ar get
/' surefire-reports/ TEST-com xpand. j ava. Cal cTest.xm " "$JI RA_SERVER URL/rest/raven/ 1. 0/ i nport/execution/junit?
proj ect Key=CALC"'

In order to submit those results to Xray, we'll just need to invoke the REST API (as detailed in Import Execution Results - REST).

However, we do not want to have the Jira credentials hardcoded in the configuration file. Therefore, we'll use some secret variables defined in GitHub
project settings.

https://github.com/actions/checkout
https://github.com/actions
https://github.com/actions/setup-java
https://docs.getxray.app/display/XRAY/Import+Execution+Results+-+REST

& bitcoder / tutorial-java-junit-calc

<> Code () Issues 1) Pull requests () Actions [Projects

Options

Manage access
Security & analysis
Branches
Webhooks
Notifications
Integrations
Deploy keys

Actions

Secrets

Moderation settings

& bitcoder / tutorial-java-junit-calc

® Unwatch + 1

11 wiki @ Security |~ Insights 7 Settings

Secrets New repository secret

Secrets are environment variables that are encrypted. Anyone with collaborator access to this repository can use these secrets for Actions.

Secrets are not passed to workflows that are triggered by a pull request from a fork. Learn more.

There are no secrets for this repository.

Encrypted secrets allow you to store sensitive information, such as access tokens, in your repository.

<> Code () Issues 1 Pull requests (») Actions [Projects [wiki @) Security |~ Insights 51 Settings

Options

Manage access

Security & analysis

Branches

Webhooks

Notifications

Integrations

Deploy keys

Actions

Secrets

Moderation settings

Some parameters may be hardcoded on the HTTP request used to submit the result; this is up to you to define what makes sense to be explicit on the

Secrets [New secret

Name

jira_username

Value

admin|

Add secret

request or what could be set, for example, using a secret variable in GitHub.

@ Please note

The Jira username must exist in the Jira instance and have permission to create Test and Test Execution Issues.

To see the runs for your workflows (i.e. workflow runs), you may access the Actions tab in your repository browser.

w

& bitcoder / tutorial-java-junit-calc @Unwatch ~ 1 77 Star

Code Issues Pullrequests @ Actions Projects Wik Security Insights Settings

Workflows New workflow All workflows

All workflows. Filter workflows
% Cl (Jira on-premises example)

7 results Event~ Status~ Branch~ Actor~

/ Merge branch 'main’ of https://github.com/bitcoder/t...
Cl (Jira on-premises example) #1: Commit dicc2ae pushed by bitcoder

~ Update README.md — £ 21 minutes ag
1 #6: Commit 734181 pushed by bitcoder [cES

+ add Maven caching — £5 41 minutes ago
c mit cfa263e pus ‘ Bazs

 fix syntax and escape curl command
C1#4: Commit eb0facs pushed by bitcoder

x submit results to Xray

1 #3: Comit 99e4492 pushed by bitcoder

~ fixtypo .

1 #2: Commit ddo8fst by bitcoder

X add Cl workflow
1#1: Commit 17825e1 pushed by bitcoder

& bitcoder / tutorial-java-junit-calc ®uUnwatch ~ 1

Code Issues Pull requests ® Actions Projects 7 wiki Security |~ Insights Settings
Workflows New workflow Cl (Jira on-premises example)
All workflows workflow:"Cl (Jira on-premises example)" e

1 result Event v Status ~ Branch ~ Actor ~

v Merge branch 'main' of https://github.com/bitcoderit... B 3 minutes ago

main
CI (Jira on-premises example) #1: Commit d1cc2ae pushed by bitcoder & 40s
Clicking in the last event that triggered the workflow run will show the details.
& bitcoder / tutorial-java-junit-calc @unwatch v 1 Yestar 0 YFork 0
Code Issues I Pull requests ® Actions | Projects Wiki Security |~ Insights Settings
° Merge branch 'main' of https://github.com/bitcoder/tuto... O Re-runiobs
main Sergio Freire -O- dlcc2ae

~v CI (Jira on-premises example)
on: push

v build s setup job
Run actions/checkout@v1
Set up Java
Cache Maven packages
Build with Maven

Submit results to Xray

» Run curl -H "Content-Type: multipart/form-data" -u $JIRA_USERNAME:$JIRA_PASSWORD -F "file=@target/surefire-reports/TEST-com.xpand. java.CalcTest.xml"
"$JIRA_SERVER_URL/rest/raven/1.0/import/execution/junit?projectKey=CALC"
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

))] [)
100 5482 100 5482 7388
100 5981 499 100 5482 672 8049

“owk/ rest/api/2/issue/20734"}, {" id
rest/api/2/issue/20732"}1}}

Post Cache Maven packages

Post Set up Java

Complete job

In Jira, Xray now shows the results of the automated tests in a brand new Test Execution issue. Test issues corresponding to each test method will be
auto-provisioned, if they don't exist yet; otherwise, results will be reported against existing Tests.

CALC / CALC-7

= Execution results - TEST-com.xpand.java.CalcTest.xml - [1606232305903]

Edit Q Comment Assign More v Start Progress ~ Resolve Issue Close Issue Admin v

(3 v Details
2 Type: [Test Execution Status: D (vView Workflow)
L3 Priority: O Trivial Resolution: Unresolved
% Labels: None

Test Plan: None
@E Test Environments: None
B
@ v Description
= Execution results imported from external source
©

v Tests

+ Add v

Overall Execution Status

PASS

Total Tests: 4

= Filter(s)
=Y Apply Rank Show entries Columns ~
Rank Key Summary Test Type #Req #Def Assignee Status
(m] 2 CALC-5 CanSubtract Generic 0 0 Xpand IT Admin | 3
(m] 1 CALC-4 CanMultiply Generic 0 0 Xpand IT Admin »
O O 4 CALC-3 CanDoStuff Generic 0 0 Xpand IT Admin | 3
» O 3 CALC-2 CanAddNumbers Generic [0 Xpand IT Admin »

Tips

® for editing workflow YAML files, you can do it directly from GitHub Ul as it provides syntax highlighting, auto-completion, and more
® in the workflow definition, configure it to cache Maven dependencies (more info here)
® it's possible to re-run jobs from GitHub Ul

@ bitcoder/ tutorial-java-junit-calc Oumaten 1 frswr o | Wrek 0

Code Issues Pullrequests © Actions Projects Wiki Security Insights Settings
° add Maven caching S Rerunjobs ~
min @ © crazese

e

2L © setupiob

the REST call

References

® Introduction to GitHub Actions
® Building and testing Java with Maven with GitHub Actions

https://docs.github.com/en/free-pro-team@latest/actions/guides/building-and-testing-java-with-maven
https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions/introduction-to-github-actions
https://docs.github.com/en/free-pro-team@latest/actions/guides/building-and-testing-java-with-maven

	Integration with GitHub

