
Integration with GitHub
blocked URLblocked URL

GitHub is a well-known platform hosting thousands of source-code repositories.

It also provides issue tracking and basic project management capabilities.

More recently, GitHub provided the ability to automate workflows using .GitHub Actions

With GitHub Actions, it's possible to implement CI/CD directly in GitHub and reuse already available to automate steps.actions from GitHub Marketplace

An introduction to GitHub actions can be seen .here

Main concepts
Accessing and sharing data

Examples
Basic JUnit example

Tips
References

Main concepts
In a nutshell, are automated processes described as YAML files, stored under These are usually triggered by events (e.g. workflows . github/workflows.
code-commit, pull-request) or can also be scheduled.

One or more workflows can be defined. Each is in turn composed by one or more , that can run sequentially or in parallel. A performs a workflow jobs job
set of sequential to achieve a certain goal. A is an individual automation task; it can be either an or simply a shell command. steps step action

An abstracts some automation task; it can be named and versioned. Actions can be implemented directly in Javascript or as Docker containers. action
GitHub also supports composite actions built of multiple inner steps.

Actions and workflows can be stored in the local repository; actions can also be published in the GitHub Marketplace.

Each time a workflow is triggered, a is created; it contains a specific context. Each job in the workflow uses a fresh virtual environment (e.g. workflow run
ubuntu-latest) sharing the same virtual file system.

Accessing and sharing data

A job can generate that can be used by another job that depends on it; this is the preferred way to share data between jobs.output variables

Another way of sharing data, especially between jobs, would be to produce and store artifact(s) in a job and obtain them in another job.

Environment variables can also be used to access some data and share them with care. are available at workflow, job or step level. Environment variables
GitHub fills out some environment variables by default.

It's also possible to access defined in GitHub project settings, as environment variables or as a step input.secrets

Examples

Basic JUnit example

In this basic example showcasing a dummy calculator, we want to get visibility of the automated test results from some tests implemented in Java, using
the JUnit framework.

Please note

The source code for this example is available in .this GitHub repository

https://github.githubassets.com/images/modules/open_graph/github-mark.png
https://avatars0.githubusercontent.com/u/44036562?s=200&v=4
https://github.com/features/actions
https://github.com/marketplace?type=actions
https://medium.com/@darktelecom/github-actions-powering-up-your-existing-repos-with-build-capabilities-1636b065b823
https://docs.github.com/en/free-pro-team@latest/actions/reference/workflow-syntax-for-github-actions#jobsjob_idoutputs
https://docs.github.com/en/free-pro-team@latest/actions/reference/environment-variables
https://docs.github.com/en/free-pro-team@latest/actions/reference/encrypted-secrets
https://github.com/bitcoder/tutorial-java-junit-calc

CalcTest.java

 package com.xpand.java;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import static org.hamcrest.CoreMatchers.is;
import static org.junit.Assert.assertThat;

public class CalcTest {

 @Before
 public void setUp() throws Exception {

 }

 @After
 public void tearDown() throws Exception {

 }

 @Test
 public void CanAddNumbers()
 {
 assertThat(Calculator.Add(1, 1), is(2));
 assertThat(Calculator.Add(-1, 1), is(0));
 }

 @Test
 public void CanSubtract()
 {
 assertThat(Calculator.Subtract(1, 1), is(0));
 assertThat(Calculator.Subtract(-1, -1), is(0));
 assertThat(Calculator.Subtract(100, 5), is(95));
 }

 @Test
 public void CanMultiply()
 {
 assertThat(Calculator.Multiply(1, 1), is(1));
 assertThat(Calculator.Multiply(-1, -1), is(1));
 assertThat(Calculator.Multiply(100, 5), is(500));
 }

 public void CanDivide()
 {
 assertThat(Calculator.Divide(1, 1), is(1));
 assertThat(Calculator.Divide(-1, -1), is(1));
 assertThat(Calculator.Divide(100, 5), is(20));
 }

 @Test
 public void CanDoStuff()
 {
 assertThat(true, is(true));
 }

}

To implement the continuous integration, we'll implement a specific for it and store it workflow .github/workflows/CI-jira-onpremises-example.
yaml.

We’ll use the actions/checkout action to checkout the code from our repository to the virtual environment. This action is one of the "standard" actions
provided by GitHub (check full list here).

To compile the code, we need to use a JDK; we can use the action actions/setup-java which allows us to choose the specific Java version.

We use Maven to build and run the tests.

.github/workflows/CI-jira-onpremises-example.yaml

 name: CI (Jira on-premises example)
on: [push]
jobs:
 build:
 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v1
 - name: Set up Java
 uses: actions/setup-java@v1
 with:
 java-version: '1.8'
 - name: Cache Maven packages
 uses: actions/cache@v2
 with:
 path: ~/.m2
 key: ${{ runner.os }}-m2-${{ hashFiles('**/pom.xml') }}
 restore-keys: ${{ runner.os }}-m2
 - name: Build with Maven
 run: mvn clean compile test --file pom.xml
 - name: Submit results to Xray
 env:
 JIRA_SERVER_URL: ${{ secrets.jira_server_url }}
 JIRA_USERNAME: ${{ secrets.jira_username }}
 JIRA_PASSWORD: ${{ secrets.jira_password }}
 run: 'curl -H "Content-Type: multipart/form-data" -u $JIRA_USERNAME:$JIRA_PASSWORD -F "file=@target
/surefire-reports/TEST-com.xpand.java.CalcTest.xml" "$JIRA_SERVER_URL/rest/raven/1.0/import/execution/junit?
projectKey=CALC"'

In order to submit those results to Xray, we'll just need to invoke the REST API (as detailed in).Import Execution Results - REST

However, we do not want to have the Jira credentials hardcoded in the configuration file. Therefore, we'll use some secret variables defined in GitHub
project settings.

https://github.com/actions/checkout
https://github.com/actions
https://github.com/actions/setup-java
https://docs.getxray.app/display/XRAY/Import+Execution+Results+-+REST

Some parameters may be hardcoded on the HTTP request used to submit the result; this is up to you to define what makes sense to be explicit on the
request or what could be set, for example, using a secret variable in GitHub.

To see the runs for your workflows (i.e. workflow runs), you may access the Actions tab in your repository browser.

Please note

The Jira username must exist in the Jira instance and have permission to create Test and Test Execution Issues.

Clicking in the last event that triggered the workflow run will show the details.

In Jira, Xray now shows the results of the automated tests in a brand new Test Execution issue. Test issues corresponding to each test method will be
auto-provisioned, if they don't exist yet; otherwise, results will be reported against existing Tests.

Tips
for editing workflow YAML files, you can do it directly from GitHub UI as it provides syntax highlighting, auto-completion, and more
in the workflow definition, configure it to cache Maven dependencies (more info)here
it's possible to re-run jobs from GitHub UI

instead of using command to interact with Xray REST API, you can abstract it in a GitHub Action and use input parameters to be passed to curl
the REST call

References
Introduction to GitHub Actions
Building and testing Java with Maven with GitHub Actions

https://docs.github.com/en/free-pro-team@latest/actions/guides/building-and-testing-java-with-maven
https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions/introduction-to-github-actions
https://docs.github.com/en/free-pro-team@latest/actions/guides/building-and-testing-java-with-maven

	Integration with GitHub

