Model-Based Testing using AltWalker and Python

® Overview
© Mapping concepts to Xray
" Tests
" Requirements
" Results
® Example
® Tips

* References

Overview

AltWalker is a test execution tool targeted for Model-Based Testing which interacts closely with GraphWalker.

GraphWalker addresses State Transition Model-Based Testing; in other words, it allows you to perform modeling around states and transitions between
those states using directed graphs.

With AltWalker, automation code related to our model can be implemented in Python, C#, or other. In this approach, GraphWalker is only responsible for
generating the path through the models.

B o
Pet Cllnlc A Spring Framework Demonstration

A Home Q Find owners i= Veterinarians A Error

Welcome - : j\t_ : e_StartBrowser

\ ~——

"»fbf:_FindOwners P e HomePage

s y

E
A i
|
e_Veterinarians R | e_HomePage
L #
— 2
. . i\‘:*“ S (]
~— \ e_Veterinarians . = e_FindOwners
— " — ‘_/’/
e - < ———

Let's clarify some key concepts, using the information provided by GraphWalker's documentation that explains them clearly:

® edge: An edge represents an action, a transition. An action could be an API call, a button click, a timeout, etc. Anything that moves your System
Under Test into a new state that you want to verify. But remember, there is no verification going on in the edge. That happens only in the vertex.

® vertex: A vertex represents verification, an assertion. A verification is where you would have assertions in your code. It is here that you verify that
an API call returns the correct values, that a button click actually did close a dialog, or that when the timeout should have occurred, the System
Under Test triggered the expected event.

®* model: A model is a graph, which is a set of vertices and edges.

From a model, GraphWalker will generate a path through it. A model has a start element, and a generator which rules how the path is generated, and
associated stop condition which tells GraphWalker when to stop generating the path.

https://altom.gitlab.io/altwalker/altwalker/
https://graphwalker.github.io/

Generators and stop conditions are essential in AltWalker & GraphWalker (more info here, here, and here), as they influence how the model will be
"walked" and until when.

Multiple models can interact with one another (i.e. jump from one to other and vice-versa), using shared states (i.e. vertices that have a "shared name").

Each model has an internal state with some variables - its context. Besides, and since GraphWalker can transverse multiple models, there is also a global
context.

We can also add actions and guards to the model, which can affect how the model is walked and how it behaves:
® action: a way of setting variables in the model or global context; actions are implemented using JavaScript

® guard: a way of blocking/guard edges from being walked/executed, usually considering variables stored in the model or global context; guards
are implemented using JavaScript.

In sum, we model (i.e. build a model) a certain aspect related to our system using directed graphs; the model represents a test idea that describes
expected behaviors. Checks are implemented in the vertices (i.e. states) and actions are performed in the edges. AltWalker will then "walk" the model (i.e.
perform a set of "steps"/edges) using a generated path from GraphWalker. While doing so, it looks at JavaScript guards to check is edges can be "walked"
and performs JavaScript based actions to set internal context variables . It stops "walking" if stop condition(s) are met.

To build the model, we can either use a visual tool (AltWalker's Model-Editor, or GraphWalker Studio) and export it to a JSON file, or an IDE instead (e.g.
VSCode with a specific extension).

Mapping concepts to Xray

Tests

Besides other entities, in Xray we have Test issues and "requirements” (i.e. issues that can be covered with Tests).

In GraphWalker, the testing is performed continuously by walking a path (as a result of its generator) and until certain condition(s) is(are) met.

This is a bit different from traditional, sequential test scripts where each one has a set of well-defined actions and expected results.

We can say that GraphWalker produces dynamic test cases, where each one corresponds to the full path that was generated. Since the number of

possible paths can be quite high, we can follow a more straightforward approach: consider each model a Test, no matter exactly what path is executed.
Remember that a model in itself is a high-level test idea, something that you want to validate; therefore, this seems a good fit as long as we have the

means to later on debug it.

Requirements
What about "requirements"?
Well, even though GraphWalker allows you to assign one or more requirement identifiers to each vertex, it may not be the best suitable approach linking

our model (or parts of it) to requirements. Therefore, and since we consider the model as a Test, we can eventually link each model to a "requirement"
later on in Jira.

Results

In sequential scripted automated tests/checks, we look at the expectation(s) using assert(s) statement(s), after we perform a set of well-known and
predefined actions. Therefore, we can clearly say that the test scenario exercised by that test either passed or failed.

In MBT, especially in the case of State Transition Model-Based Testing, we start from a given vertex but then the path, that describes the sequence of
edges and vertices visited, can be quite different each time the tool generates it. The stop condition is not composed by one or more well-known and fixed
expectations; it's based on some more graph/model related criteria.

When we "execute the model," it will walk the path (i.e. go over from vertex to vertex through a given edge) and perform checks in the vertices. If those

checks are successful until the stop condition(s) is achieved, we can say that it was successful; otherwise, the model is not a good representation of the
system as it is and we can say that it "failed.”

Example

This tutorial is based on an example provided by the GraphWalker community (please check GraphWalker wiki page describing it) which targets the well-
known PetClinic sample site.

This example has been ported from GraphWalker+Java to AltWalker+Python and the full source-code is available here.

https://altom.gitlab.io/altwalker/altwalker/path-generation.html
https://github.com/GraphWalker/graphwalker-project/wiki/Test-path-generation
https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions
https://altom.gitlab.io/altwalker/altwalker/how-tos/actions-and-guards.html
https://altom.gitlab.io/altwalker/model-editor
https://github.com/GraphWalker/graphwalker-project/wiki/GraphWalker-Studio
https://marketplace.visualstudio.com/items?itemName=Altom.altwalker-model-visualizer
https://github.com/GraphWalker/graphwalker-project/wiki/PetClinic
https://github.com/spring-projects/spring-petclinic/
https://github.com/bitcoder/altwalker-petclinic-example

Pet CliniC A Spring Framework Demonstration

A Home Q Find owners i= Veterinarians A Error

Welcome

&) spring ..

Requirements

® Target SUT (PetClininc sample application):
© Java 8
O source-code
" git clone https://github.com SpringSource/spring-petclinic.git
cd spring-petclinic
git reset --hard 482eeb1c217789b5d772f 5c15c3ab7aa89caf 279
m/n tontat7:run

® Test code (source-code and additional details here)
© GraphWalker 4.2.0
o AltWalker 0.2.7
o Altom's Model-Editor or GraphWalker Studio

How can we test the PetClinic using MBT technique?

Well, one approach could be to model the interactions between different pages. Ultimately they represent certain features that the site provides and that
are connected with one another.

In this example, we'll be using these:

® PetClinic: main model of the PetClinic store, that relates several models provided by different sections in the site
® FindOwners: model around the feature of finding owners

® Veterinarians: model around the feature of listing veterinarians

® Ownerlnformation: model around the ability of showing information/details of a owner

® NewOwner: model around the feature of creating a new owner

(D Please note

Remember that you could model it completely differently; modeling represents a perspective.

As mentioned earlier, models can be built using AltWalker's Model-Editor (or GraphWalker Studio) or directly in the IDE (for VSCode there's a useful
extension to preview it). In the visual editors, namely in AltWalker's Model-Editor, we can use it to load previously saved model(s) like the ones in petclinic_f
ull.json. In this case, the JSON file contains several models; we could also have one JSON file per model.

https://github.com/bitcoder/altwalker-petclinic-example
https://altom.gitlab.io/altwalker/model-editor/
https://github.com/GraphWalker/graphwalker-project/wiki/GraphWalker-Studio
https://marketplace.visualstudio.com/items?itemName=Altom.altwalker-model-visualizer
https://marketplace.visualstudio.com/items?itemName=Altom.altwalker-model-visualizer
https://github.com/bitcoder/altwalker-petclinic-example/blob/main/models/petclinic_full.json
https://github.com/bitcoder/altwalker-petclinic-example/blob/main/models/petclinic_full.json

The following picture shows the overall PetClinic model, that interacts with other models, and also the NewOwner model.

Model-Editor

e P

Z

mm/rm/ﬂm' . - V\
_— {Fmao\meys > < o
A P

e_Veterinarians e e_HomePage

= e_FindOwners

b

Editor
SELECT MODEL

PetClinic

Edit Model
NAME

PetClinic

START ELEMENT

De

32ea3d10-789a-11ea-8c87-010078a2bc20 - e_StartBrowser ~

GENERATOR ©

random(edge_coverage(100))

ACTIONS ©

Model-Editor

&_IncorrectData e,Don e_CorrectData

v_IncorrectData

If we use the visual editors to build the model, then we need to export it to one (or more) JSON file(s).

Editor
SELECT MODEL

[NewOwner

Edit Model

NAME
NewOwner

START ELEMENT

GENERATOR @

random(edge_coverage(100))

ACTIONS ©

Actions (optional)

Editor View Models
SELECT MO
FLEeTHOPEL Export/Import
NewOwner -

Reset Models

New model .
Settings

Edit Model

NAME
NewOwner

START ELEMENT

Export

FILE NAME:

petclinic_full

Import

CHOASE A FILE:

| Browse

Note: if you use GraphWalker Studio instead, it allows you to run the model in offline, i.e. without executing the underlying test automation code, so we can
validate it.

Let's pick the NewOwner model as an example, which is quite simple.
"v_NewOwner" represents, accordingly to what we've defined for our model, being on the "New Owner" page.
If we fill correct data (i.e. using the edge "e_CorrectData"), we'll be redirected to a page showing the owner information.

Otherwise, if we fill incorrect data (i.e. using the edge "e_IncorrectData") an error will be shown and the user keeps on the "New Owner" page.

(D Please note

As detailed in AltWalker's documentation, if we start from scratch (i.e. without a model), we can initialize a project for our automation code using
something like:

$ altwal ker init -1 python test-project

When we have the model, we can generate the test package containing a skeleton for the underlying test code.

$ al twal ker generate -1 python path/for/test-project/ -m path/to/nodels.json

If we do have a model, then we can pass it to the initialization command:

$ altwal ker init -1 python test-project -m path/to/nodel-nane.json

During implementation, we can check our model for issues/inconsistencies, just from a modeling perspective:

$ al twal ker check -m path/to/ nodel -nane.json “randon{vertex_coverage(100))"

We can also check verify if the test package contains the implementation of the code related to the vertices and edges.

$ al twal ker verify -m path/to/nodel -nane.json tests

Check the full syntax of AltWalker's CLI (i.e. "altwalker") for additional details.

https://altom.gitlab.io/altwalker/altwalker/quickstart.html
https://altom.gitlab.io/altwalker/altwalker/cli.html

The main test package is stored in tests/test.py. The implementation follows the Page Objects Model using pypom package and each page is stored in a
proper class under a specific pages directory.

Besides, faker is also used to generate test data that will be used by the model (e.g. whenever filling data on the edges).

Actions performed in the edges are quite simple. Assertions are also simple as they're only focused on the state/vertex they are at.

tests/test.py (main code with the tests)

inport unittest

from sel eni uminport webdriver
from sel eni um webdriver. firefox.options inport Options

fromtests. pages. base i nport BasePage

fromtests. pages. hone inport HonePage

fromtests. pages. find_owners inport FindOmersPage

fromtests. pages. owners inport OmnersPage

fromtests. pages. new_owner inport NewOaner Page

fromtests. pages.veterinarians inport VeterinariansPage
fromtests. pages. owner _i nformation i nport Oaner | nformati onPage

i mport sys
i mport pdb
from faker inport Faker

debugger = pdb. Pdb(ski p=["al twal ker.*'], stdout=sys.stdout)
fake = Faker()

HEADLESS = Fal se
BASE_URL = "http://I ocal host: 9966/ petclinic"

driver = None

def set UpRun():
"""Setup the webdriver.

gl obal driver

options = Options()
i f HEADLESS:
options. add_ar gunent (' - headl ess')

print("Create a new Firefox session")
driver = webdriver. Firefox(options=options)

print("Set inplicitly wait")
driver.inplicitly_wait(15)
print ("W ndow size: {w dth}x{height}".format(**driver.get_w ndow_ size()))

def tear DownRun():
"""Cl ose the webdriver.

gl obal driver

print("Close the Firefox session")
driver.quit()

cl ass BaseMbdel (unittest. Test Case):
"""Contains common nethods for all nodels."""
def set UpModel (sel f):
gl obal driver
print("Set up for: {}".format(type(self).__nane_))
sel f.driver = driver

def v_HonePage(self):

https://github.com/bitcoder/altwalker-petclinic-example/blob/main/tests/test.py
https://pypom.readthedocs.io/en/latest/
https://github.com/bitcoder/altwalker-petclinic-example/tree/main/tests/pages
https://faker.readthedocs.io/en/master/

page = HonmePage(sel f.driver)
sel f. assert Equal (page. headi ng_t ext, "Welcone", "Wl cone headi ng shoul d be present")
sel f.assert True(page.is_footer_present, "footer should be present")

def v_Fi ndOmers(self):
page = Fi ndOanersPage(sel f.driver)
sel f. assert Equal ("Fi nd Oaners", page. headi ng_text, "Find Omers headi ng shoul d be present")
sel f.assert True(page.is_footer_present, "footer should be present")

def v_NewOwmner (self):
page = NewOaner Page(sel f.driver)
sel f. assert Equal ("New Omner", page. headi ng_t ext, "New Oamner headi ng shoul d be present")
#$x("/ htm / body/tabl e/ tbody/tr/td[2]/ing").shoul dBe(visible);
sel f.assert True(page.is_footer_present, "footer should be present")

def v_Omners(self):
page = Owner sPage(sel f.driver)
sel f. assert Equal (" Omners", page. headi ng_text, "Owners headi ng should be present")
sel f.assert Greater(page.total _owners_in_list, 9, "Omers in listing >= 10")

def v_Veterinarians(self):
page = VeterinariansPage(sel f.driver)
sel f. assert Equal (page. headi ng_t ext,"Veterinarians", "Veterinarians headi ng should be present")
sel f.assert True(page.i s_footer_present, "footer should be present")

def v_Ownerlnfornation(self, data):
page = Owner | nfornati onPage(sel f.driver)
sel f. assert Equal (page. headi ng_text, "Owner Information", "Oaner I|nfornmation heading should be
present™)
dat a["nunf Pet s"] = page. nunber _of _pets
print(f"nuntf Pets: {page.nunber_of pets}")
sel f.assert True(page.i s_footer_present, "footer should be present")

def e_DoNot hi ng(sel f, data):
#debugger . set _trace()
pass

def e_Fi ndOmners(self):
page = BasePage(sel f.driver)
page. click_find_owners()

class Petdini c(BaseMdel):
def e_StartBrowser(self):
page = HonePage(sel f.driver, BASE_URL)
page. open()

def e_HonmePage(self):
page = HonmePage(sel f.driver)
page. cl i ck_hone()

def e_Veterinarians(self):
page = HonePage(sel f.driver)
page. click_veterinarians()

def e_Fi ndOmers(self):
page = HonmePage(sel f.driver)
page. click_find_owners()

cl ass Fi ndOmner s(BaseMdel):
def e_AddOmner (self):
page = Fi ndOmer sPage(sel f.driver)
page. cl i ck_add_owner ()
def e_Search(sel f):

page = Fi ndOmner sPage(sel f.driver)
page. cl i ck_submit()

cl ass Oaner | nfornati on(BaseMdel) :

def e_Updat ePet (sel f):
page = Oaner | nformati onPage(sel f.driver)
page. click_submt()

def e_AddPet Successful ly(self):
page = Oaner | nfornmati onPage(sel f.driver)
page. fillout_pet(fake.nane(), fake. past_date().strftime("%/ %1 %"), "dog")
page. click_submt()

def e_AddPet Fail ed(sel f):
page = Owner | nfornati onPage(sel f.driver)
page. fillout_pet("", fake. past_date().strftime("%/ % %l"), "dog")
page. click_submt()

def e_AddNewPet (sel f):
page = Owner | nfornati onPage(sel f.driver)
page. cl i ck_add_new_pet ()

def e_EditPet(self):
page = Owner | nf or mati onPage(sel f.driver)
page. click_edit_pet()

def e_AddVisit(self):
page = Owner | nformati onPage(sel f.driver)
page. cl i ck_add_visit()

def v_NewPet (sel f):
page = Owner| nfornati onPage(sel f.driver)
sel f. assert Equal (page. headi ng_text, "New Pet", "New Pet headi ng should be present")
sel f.assert True(page.i s_footer_present, "footer should be present")

def v_NewVisit(self):
page = Owner| nfornmati onPage(sel f.driver)
sel f. assert Equal (page. headi ng_text, "New Visit", "New Visit heading should be present")
sel f.assert True(page.is_visit_visible, "visit should be present")

def e_VisitAddedSuccessfully(self):
page = Owner | nfornati onPage(sel f.driver)
page. cl ear _descri ption()
page. set _descri pti on(fake. nanme())
page. cl i ck_submit()

def e_VisitAddedFail ed(self):
page = Owner| nfornati onPage(sel f.driver)
page. cl ear _descri ption()
page. click_submit()

def v_Pet(self):
page = Owner | nfornmati onPage(sel f.driver)
sel f. assert Equal (page. headi ng_text, "Pet", "Pet heading should be present")

cl ass Veterinari ans(BaseMdel):
def e_Search(self):
page = VeterinariansPage(sel f.driver)
page. search_for ("hel en")

def v_SearchResult(self):
page = VeterinariansPage(self.driver)
sel f.assert True(page.is_text_present_in_vets_table, "Helen Leary")
sel f.assert True(page.is_footer_present, "footer should be present")

def v_Veterinarians(self):
page = Veterinari ansPage(self.driver)
sel f. assert Equal (page. headi ng_t ext,"Veterinarians", "Veterinarians headi ng should be present")
sel f. assert Great er (page. nunber _of _vets_in_table, 0, "At |east one Veterinarian should be |isted
in table")

cl ass NewOwnner (BaseMbdel) :

def e_CorrectData(self):
page = NewOaner Page(sel f.driver)

page. fill_owner_data(first_nane=fake.first_name(), |ast_nanme=fake.last_nanme(), address=fake.
address(), city=fake.city(), tel ephone=fake.pystr_fornmat (' #######H#H#))

#page. fill _tel ephone(fake. pystr_format (' ##########))

page. click_submit()

def e_lncorrectData(self):
page = NewOaner Page(sel f.driver)
page. fill _owner_data()
#page.fill _tel ephone("12345678901234567890")
page. fill _tel ephone(fake. pystr_format (' ######B#H#HHHHHAHBRERE))
page. click_submt()

def v_IncorrectData(self):
page = NewOwner Page(sel f.driver)
sel f. assert True(page. error_nessage, "nuneric value out of bounds (<10 digits>. <0 digits>
expect ed")

In the previous code, we can see that each model is a class. Each one of those classes must contain methods corresponding to the related edges and
vertices; methods should be named in the same way as the names assigned for the edges and for the vertices in the model.

To run the tests using a random path generator and stopping upon 100% of vertex coverage, we can use AltWalker CLI tool such as:

example of a Bash script to run the tests

al twal ker online tests -m nodel s/petclinic_full.json "randon(vertex_coverage(100))"

However, that would only produce some debug output to the console.
If we aim to integrate this in CI/CD, or even have visibility of it in a test management tool such as Xray, we need to generate a JUnit XML report.
However, AltWalker (as of v0.2.7) does not yet provide a built-in JUnit reporter.

Luckily, we can implement our own code to run AltWalker as it provides an open API. This code is available in the script run_with_custom_junit_report.py,
which can be found the repository the sample code of this tutorial.

example of Python code to run the tests with a custom reporter

from al twal ker. pl anner inport create_planner

from al twal ker . executor inport create_executor

from al twal ker. wal ker inport create_wal ker
fromcustomjunit_reporter inport CustomlunitReporter
i nport sys

i mport pdb

import click

def _percentege_col or (percentage):
if percentage < 50:

return "red"

if percentage < 80:
return "yell ow'

return "green"

def _style_percentage(percentege):
return click.style("{}% .format(percentege), fg=_percentege_col or(percentege))

https://altom.gitlab.io/altwalker/altwalker/api.html
https://github.com/bitcoder/altwalker-petclinic-example/blob/main/run_with_custom_junit_report.py

def _style_fail (nunber):
color = "red" if nunber > 0 else "green"

return click.style(str(nunber), fg=color)

def _echo_stat(title, value, indent=2):
title =" " * indent + title.ljust(30, ".")
value = str(value).rjust(15, ".")

click.echo(title + val ue)

def _echo_statistics(statistics):
"""Pretty-print statistics."""

click.echo("Statistics:")
click.echo()

total _nodels = statistics["total Nunber Of Model s"]
conpl eted_nodel s = statistics["total Conpl et edNunber O Model s"]
nodel _coverage = _styl e_percentage(conpl eted_nodels * 100 // total _nodels)

_echo_stat ("Mddel Coverage", nodel _coverage)
_echo_stat ("Nunber of Mdels", click.style(str(total_nodels), fg="white"))
_echo_stat (" Conpl eted Mdel s", click.style(str(conpleted_nodels), fg="white"))

_echo_stat ("Failed Mdels", _style_fail(statistics["total FailedNunmber O Mbdel s"]))

_echo_stat ("I nconpl ete Mdels", _style_fail(statistics["totallnconpleteNunberO Model s"]))
_echo_stat ("Not Executed Mdels", _style_ fail(statistics["total Not ExecutedNunber Of Model s"]))
click.echo()

debugger = pdb. Pdb(ski p=['altwal ker.*'], stdout=sys. stdout)
reporter = None
if __pame__ =="__main__
try:
pl anner = None
executor = None
statistics = {}
nodels = [("nodel s/petclinic_full.json","randon(vertex_coverage(100))")]
steps = None
graphwal ker _port = 5000
start _el ement =None
url ="http://1ocal host:5000/"
ver bose=Fal se
unvi si t ed=Fal se
bl ocked=Fal se
tests = "tests"
execut or _type = "python"
pl anner = create_pl anner (nodel s=npdel s, steps=steps, port=graphwal ker_port, start_elenent=start_el enent,
ver bose=True, unvisited=unvisited, blocked=bl ocked)
executor = create_executor(tests, executor_type, url=url)
reporter = CustomlunitReporter()

wal ker = create_wal ker (pl anner, executor, reporter=reporter)

wal ker . run()

statistics = planner.get_statistics()

finally:

print(statistics)

_echo_statistics(statistics)

reporter.set_statistics(statistics)

junit_report = reporter.to_xm _string()

print(junit_report)

with open('output.xm', "w) as f:
f.wite(junit_report)

with open('output_allinone.xm"', "wW) as f:
f.wite(reporter.to_xm _string(generate_single_testcase=True, single_testcase_nanme="

PetClinicAllinOne"))

#debugger . set _trace()

if planner:
pl anner. kill ()

if executor:
executor.kill()

This code makes use of a custom reporter that can generate JUnit XML reports in two different ways:

1. mapping each model to a JUnit <testcase> element, which ultimately will be translated to a Test issue in Xray per each model
2. mapping the whole run to a single JUnit <testcase> element, considering the whole run as successful or not; in this case, it will be lead to a single
Test issue in Xray

The previous runner's code above produces these two reports, so we can evaluate them.

After successfully running the tests and generating the JUnit XML report, it can be imported to Xray (either by the REST API or through the Import
Execution Results action within the Test Execution, or even by using a CI tool of your choice).

example of a Bash script to import the results

#!/ bi n/ bash

if you wish to map the whole run to single Test in Xray/Jira
#REPORT_FI LE=out put _al | i none. xm

if you wish to map each nodel as a separate Test in Xray/Jira
REPORT_FI LE=out put . xni

curl -H "Content-Type: multipart/formdata" -u admn:adnmin -F "fil e=@REPORT_FI LE" http://jiraserver.exanpl e.com
/rest/raven/ 1.0/ i nport/execution/junit?projectKey=CALC

https://github.com/bitcoder/altwalker-petclinic-example/blob/main/custom_junit_reporter.py
https://docs.getxray.app/display/XRAY/Import+Execution+Results+-+REST
https://docs.getxray.app/display/XRAY/Integrations

Calculator / CALC-8069

Execution results - output.xml - [1606964779225]

Edit QComment Assign More v StartProgress Resolve ssue Close Issue Admin v
v Details
Type: [Test Execution Status: XD (view Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

Test Environments: None

Test Plan: None

v Description
Execution results imported from external source

v Tests

+ Add v
Overall Execution Status

4 PASS 1 FAIL

Total Tests: 5

= Filter(s)
Apply Rank entries Columns +
Rank Key 4 summary Test Type #Req #Def Assignee Status
(m) 2 CALC-8061 FindOwners Generic 0 0 Administrator [pass] >
m) 1 CALC-8060 NewOwner Generic 0 0 Administrator >
u] 3 CALC-8057 Ownerinformation Generic 0 o Administrator PASS >
u] 5 CALC-8059 PetClinic Generic 4 0 Administrator [pass | >
[m] 4 CALC-8058 Veterinarians Generic 0 0 Administrator [pass] »
Showing 1to 5 of 5 entries First Previous [l Next Last

Each model is mapped to JUnit's <testcase> element which in turn is mapped to a Generic Test in Jira, and the Generic Test Definition field contains the
unique identifier of our test; in this case it's "model.<name_of_model>". The summary of each Test issue has the name of the model.

The Execution Details page also shows information about the Test Suite, which will be just "AltWalker"

Calculator / Test Execution: CALC-8069 / Test: CALC-8060
NewOwner

B ExportTestasText ReturntoTestExecution Execute with Exploratory App Next »

Execution Status [JJJ] FAIL Assignee: Administrator Versions: -

Executed By: Administrator Revision: -

Started On: 03/Dec/20 3:06 AM () Finished On: 03/Dec/20 3:06 AM Tests -
environments:

Affected Requirements -~

None

Comment Preview Comment v Execution Defects (0) Create Defect Create Sub-Task Add Defects v Execution Evidence (0) Add Evidence v

e Execution Details

Test Description ~

None

Custom Fields A

There are no Test Run Custom Fields defined.

Test Details ~
Test Type: Generic
Definition: models.NewOwner
Results ~
Context output Duration status
TestSuite AltWalker 16 sec FAIL

[2020-12-04 1
Error: Messag

4:50.641284]
Failed to interpret value as array

Traceback (most recent call last):
File "/usr/local/lib/python3.8/site-packages/altvalker/executor.py”, line 51, in get_output
callable(*args, *+kvargs)

File "tests/test.py", line 89, in v_OwnerInformation

print(£'nunofpets: (page.number of pets)’)

File "tests/pages/owner_information.py", line 66, in number of pets

return len(self.find elements(*self. pets locator))

@ Alternate JUnit XML generation (all-in-one/single testcase)

If we generate the JUnit XML report with a single <testcase> element for the whole run of our model, we would have just one Test created in
Xray. It would be globally passed/failed.

Our complete model is abstracted to a Test issue having a Generic Test Definition (i.e. its unique identifier) as something as "models.
<customizable_in_the_reporter>".

= Calculator / CALC-8068

Execution results - output_allinone.xml - [1606964750171]

Edit Q Comment Assign More v Start Progress Resolve Issue Close Issue Admin v
v Details
Type: [Test Execution Status: I (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

Test Environments: None

Test Plan: None

<

Description
Execution results imported from external source

v Tests
+ Add v
Overall Execution Status

1 FAIL

Total Tests: 1

= Filter(s)
Apply Rank entries Columns v
Rank Key 4 summary Test Type #Req #Def Assignee Status
m] 1 CALC-8064 PetClinicAllinOne Generic 0 0 Administrator >
Showing 1to 1 of 1 entries First Previous T‘ Next Last

Calculator / Test Execution: CALC-8068 | Test: CALC-8064

A ATR ExportTestas Text 4 Returnto Test Execution Execute with Explorato
PetClinicAllinOne b
Execution Status [} FAIL Assignee: Administrator Vers
Executed By: Administrator Revi
Started On: 03/Dec/20 3:05 AM Finished On: 03/Dec/20 3:05 AM Tests -
environments:
Affected Requirements
None
Comment Preview Comment v Execution Defects (0) Create Defect Create Sub-Task Add Defects v Execution Evidence (0) Add Evide!
e Execution Details
Test Description
Custom Fields
There are no Test Run Custom Fields defined.
Test Details
Test Type: Generic
Definition: models.PetClinicAllinOne
Results
Context Output Duration Status
TestSuite AltWalker s1sec (N

[2020-12-04 12:04:50.641284]
Error: Message: Failed to interpret value as array

Traceback (most recent call last):

File "/usr/local/lib/python3.8/site-packages/altwalker/executor.py”, line 51, in get_output
callable(*args, *+kwargs)

File "tests/test.py”, line 89, in v_OwnerInformation

print (£'numOfPets: {page.number_of pets}")

File "tests/pages/owner_information.py”, line 66, in number_of_pets

return len(self.find elements(*self. pets locator))

Tips

Use MBT not to replace existing test scripts but in cases where you need to provide greater coverage
Discuss the model(s) with the team and the ones that can be most valuable for your use case

Multiple runs of your tests can be grouped and consolidated in a Test Plan, so you can have an updated overview of their current state
After importing the results, you can link the corresponding Test issues with an existing requirement or user story and thus truck coverage directly

on the respective issue, or even on an Agile board

Calculator / CALC-8070
As a user, | can access the PetClinic site

#Edit QComment Assign More v StartProgress CloseIssue Admin v
~ Details

Type: [story

Priority: 2 Major

Affects Version/s: None

Component/s: None

Labels: None

~ Description
As a user, | can access the PetClinic site to perform a set of operations.

~ Test Coverage

o No Tests were found testing the requirement.

Create Test

Calculator / CALC-8070
As a user, | can access the PetClinic site

#Edit QComment Assign More v StartProgress Close Issue
~ Details

Type: B story

Priority: A Major

Affects Version/s: None

Component/s: None

Labels: None

Requirement Status:

~ Description
As a user, | can access the PetClinic site to perform a set of operations.

~ Test Coverage

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~

= Filter(s)
Bv
3 status Resolution A key
o 2 OPEN Unresolved CALC-8057
o 2 OPEN Unresolved CALC-8058
o 2 OPEN Unresolved CALC-8059
o 2 OPEN Unresolved CALC-8060
o 2 OPEN Unresolved CALC-8061
o Showing 1to 5 of 5 entries

All sprints switch sprint v

QUICKFILTERS: Only My Issues Recently Updated

To Do

CALC-962
As a user, | can calculate add positive numbers

CALC-983 As a user, | can calculate the sum of 2 numbers

CALC-3206
Sub Test Execution for CALC-983
I

oz

cALC-970
calculator screen does not show anything

Create Sub-Test Execution

Admin v

Status: I (View Workflow)
Resolution Unresolved
Fix Version/s: None

+ Link +

Tests...

Tost-Sote

Status (G (View Workflow)
Resolution: Unresolved
Fix Version/s None

entries Columns ~
Summary Test Runs Test Status
‘Ownerinformation 0
Veterinarians
PetClinic
NewOwner T
FindOwners
First Previous [#] Next Last
IN PROGRESS
CALC-8070

As a user, | can access the PetClinic site

CALC-8055
As a user, | can access the PetClinic site

([T)

CALC-8048

As a user, | can obtain location data for a given country's zipcode
(0K)

CALC-3208

References

AltWalker

Visual model editor for AltWalker and GraphWalker

AltWalker Model Visualizer for VSCode

Actions and Guards (from AltWalker's documentation)

AltWalker examples (Python and C#/.NET)

AltWalker CLI

Port of PetClinic MBT example to AltWalker and Python (code for this tutorial)
GraphWalker models for testing the PetClinic site (source-code)

GraphWalker
GraphWalker documentation pages

https://altom.gitlab.io/altwalker/altwalker/index.html
https://altom.gitlab.io/altwalker/model-editor/#/visual-editor
https://marketplace.visualstudio.com/items?itemName=Altom.altwalker-model-visualizer
https://altom.gitlab.io/altwalker/altwalker/how-tos/actions-and-guards.html
https://altom.gitlab.io/altwalker/altwalker/examples.html
https://altom.gitlab.io/altwalker/altwalker/cli.html
https://github.com/bitcoder/altwalker-petclinic-example
https://github.com/GraphWalker/graphwalker-project/wiki/PetClinic
https://github.com/GraphWalker/graphwalker-example/tree/master/java-petclinic
https://graphwalker.github.io/
https://github.com/GraphWalker/graphwalker-project/wiki

	Model-Based Testing using AltWalker and Python

