
1.

2.

3.

a.
b.

Testing using Cucumber in Java

Overview
Usage scenarios
Example

Using Jira and Xray as master
Step-by-step

Using Git or other VCS as master
Step-by-step

FAQ and Recommendations
References

Overview
In this tutorial, we will create some tests in Cucumber using Java.

Cucumber is mainly a collaboration framework used in BDD context in order to improve shared understanding within the team, usually during "3 Amigos"
sessions. That's its main fit.

However, some teams use it in other contexts (e.g. after sofware has being built) for implementing automated tests and take advantage of Gherkin syntax
to have visibility/abstraction of the underlying automation code and have reusable automation code.

(Test) Scenarios derived from Cucumber are executable specifications; their statements will have a corresponding code implementation. These test
scenarios are feature and more business oriented; they're not unit/integration tests.

Your specification is made using Gherkin (i.e. Given, When, That) statements in Scenario(s) or Scenario Outline(s), eventually complemented with a
Background. Implementation of each Gherkin statement (i.e. "step") is done in code; the Cucumber framework finds the code based on regular or
cucumber expressions.

Usage scenarios
Cucumber is used in diverse scenarios. Next you may find some usage patterns, even though Cucumber usage is mostly recommended only if you are
adopting BDD.

Teams adopting BDD, start by defining a user story and clarify it using Cucumber Scenario(s); usualy, Cucumber Scenario(s)/Scenario Outline(s)
are specified directly in Jira, using Xray
Teams adopting BDD but that favour a more Git based approach (e.g. GitOps). In this case, stories would be defined in Jira but Cucumber .
feature files would be specified using some IDE and would be stored in Git, for example
Teams not adopting BDD but still using Cucumber, more as an automation framework. Sometimes focused on regression testing; sometimes, for
non-regression testing. In this case, cucumber would be used...

With a user story or some sort of "requirement" described in Jira
Without any story/"requirement" described in Jira

You may be adopting, or aiming to, one of the previous patterns.

Before moving into the actual implementation, we need to decide which workflow we'll use: do we want to use Xray/Jira as the master for writing the
declarative specification (i.e. the Gherkin based Scenarios), do we want to manage those outside using some editor and store them in Git, for example?or

Example

Source-code for this tutorial

Code is available in ; the repo contains some auxiliary scripts.GiHub

Learn more

Please see for an overview of the possible workflows. Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

The place that you'll use to edit the Cucumber Scenarios will affect your workflow. There are teams that prefer to edit Cucumber Scenarios in
Jira using Xray, while there others that prefer to edit them by writing the .feature files by hand using some IDE.

https://github.com/Xray-App/tutorial-java-cucumber
https://docs.getxray.app/pages/viewpage.action?pageId=68410215

For the purpose of this tutorial, we'll use a simple, dummy Calculator implemented in a Java class as our target for testing.

src/main/java/com/xray/tutorials/Calculator.java

package com.xray.tutorials;

public class Calculator
{

// Square function
public static int Square(int num)
{
 return num*num;
}

// Add two integers and returns the sum
public static int Add(int num1, int num2)
{
 return num1 + num2;
}

// Add two integers and returns the sum
public static double Add(double num1, double num2)
{
 return num1 + num2;
}

// Multiply two integers and retuns the result... this code is buggy on purpose
public static int Multiply(int num1, int num2)
{
 if (num1==0) {
 return num2;
 } else if (num2==0) {
 return num1;
 } else {
 return num1 * num2;
 }
}

public static int Divide(int num1, int num2)
{
 return num1 / num2;
}

// Subtracts small number from big number
public static int Subtract(int num1, int num2)
{
 if (num1 > num2)
 {
 return num1 - num2;
 }
 return num2 - num1;
 }
}

This tutorial, has the following requirements:

Java

Try it yourself!

The code on this tutorial is available in the GitHub repository.cucumber-java-calc

You can fork it and try it for youself.

https://github.com/bitcoder/cucumber-java-calc

1.
2.

3.

4.
5.
6.
7.
8.
9.

Add the dependency of cucumber-jvm (i.e.) to your maven "pom.xml" filecucumber-java

Using Jira and Xray as master

This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).

The overall flow would be something like this, assuming Git as the source code versioning system:

define the story (skip if you already have it)
create Scenario/Scenario Outline as a Test in Jira; usually, it would be linked to an existing "requirement"/Story (i.e. created from the respective
issue screen)
implement the code related to Gherkin statements/steps and store it in Git, for example. To start, and during development, you may need to
generate/export the .feature file to your local environment
commit previous code to Git
checkout the code from Git
generate .feature files based on the specification made in Jira
run the tests in the CI
obtain the report in Cucumber JSON format
import the results back to Jira

Note that steps (5-9) performed by the CI tool are all automated, obviously.

To generate .feature file(s) based on Scenarios defined in Jira (i.e. Cucumber Tests and Preconditions), we can do it directly from Jira, by the REST API or
using a CI tool; we'll see that ahead in more detail.

Step-by-step

All starts with a user story or some sort of “requirement” that you wish to validate. This is materialized as a Jira issue and identified by the corresponding
issue key (e.g. CALC-7931).

https://cucumber.io/docs/installation/java/

We can promptly check that it is “UNCOVERED” (i.e. that it has no tests covering it, no matter their type/approach).

In this case, we'll create a Cucumber Test, of Cucumber Type "Scenario".

We can fill out the Gherkin statements immediately on the Jira issue create dialog or we can create the Test issue first and fill out the details on the next
screen, from within the Test issue. In the latter case, we can take advantage of the built-in Gherkin editor which provides auto-complete of Gherkin steps.

After the Test is created, and since we have done it from the user story screen, it will impact the coverage of related "requirement"/story.

The coverage and the test results can be tracked in the "requirement" side (e.g. user story). In this case, you may see that coverage changed from being
UNCOVERED to NOTRUN (i.e. covered and with at least one test not run).

Additional tests could be created, eventually linked to the same Story or linked to another one (e.g. multiplication).

The related statement's code is managed outside of Jira and stored in Git, for example.

The tests related code is stored under directory, which itself contains several other directories. In this case, they're organized as follows:src/test

java/calculator: step implementation files and test runner class.
The steps "glue-code" is defined in the StepDefinitions class.

src/test/java/calculator/StepDefinitions.java

package calculator;

import io.cucumber.java.en.Given;
import io.cucumber.java.en.Then;
import io.cucumber.java.en.When;
import com.xray.tutorials.Calculator;

import static org.junit.Assert.*;

public class StepDefinitions {
 private Integer int1;
 private Integer int2;
 private Integer result;

 @Given("I have entered {int} into the calculator")
 public void i_have_entered_into_the_calculator(Integer int1) {
 this.int2 = this.int1;
 this.int1 = int1;
 }

 @When("I press add")
 public void i_press_add() {
 this.result = Calculator.Add(this.int1, this.int2);
 }

 @When("I press multiply")
 public void i_press_multiply() {
 this.result = Calculator.Multiply(this.int1, this.int2);
 }

 @Then("the result should be {int} on the screen")
 public void the_result_should_be_on_the_screen(Integer value) {
 assertEquals(value, this.result);
 }

}

the test runner is defined in the RunCucumberTest class. Cucumber options can be overriden from the command line, whenever executing
Maven.

src/test/java/calculator/RunCucumberTest.java

package calculator;

import io.cucumber.junit.Cucumber;
import io.cucumber.junit.CucumberOptions;
import org.junit.runner.RunWith;

@RunWith(Cucumber.class)
@CucumberOptions(plugin = {"pretty"})
public class RunCucumberTest {

}

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the UI action from within the Test Export to Cucumber
/Test Execution issue or even based on an existing saved filter. As source, you can identify Test, Test Set, Test Execution, Test Plan or "requirement"
issues. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

use one of the available CI/CD plugins (e.g. see details of)Integration with Jenkins

https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins

use the REST API directly (more info) here

#!/bin/bash

rm -f features/*.feature
curl -u admin:admin "http://jiraserver.example.com/rest/raven/1.0/export/test?keys=CALC-7931;CALC-
7935&fz=true" -o features.zip
unzip -o features.zip -d features

... or even use the UI (e.g. from a Test issue)

We will export the features to a new directory named features/ on the root folder of your Java project (we'll need to tell Maven to use this folder).

After being exported, the created .feature(s) will contain references to the Test issue key, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in .Export Cucumber Features backup

https://docs.getxray.app/display/XRAY500/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/pages/viewpage.action?pageId=62271186

features/1_CALC-7931.feature

@REQ_CALC-7931
Feature: As a user, I can calculate the sum of two numbers
 #As a user, I can calculate the sum of two numbers

 #Tests As a user, I can calculate the sum of two numbers
 @TEST_CALC-7934
 Scenario Outline: sum of two positive numbers
 Given I have entered <input_1> into the calculator
 And I have entered <input_2> into the calculator
 When I press <button>
 Then the result should be <output> on the screen

 Examples:
 | input_1 | input_2 | button | output |
 | 20 | 30 | add | 50 |
 | 2 | 5 | add | 7 |
 | 0 | 40 | add | 40 |
 | 4 | 50 | add | 54 |
 | 5 | 50 | add | 55 |

 @TEST_CALC-7933
 Scenario: negative integer adition
 Given I have entered -1 into the calculator
 And I have entered 2 into the calculator
 When I press add
 Then the result should be 1 on the screen

 #Tests As a user, I can calculate the sum of two numbers
 @TEST_CALC-7932
 Scenario: simple integer addition
 Given I have entered 1 into the calculator
 And I have entered 2 into the calculator
 When I press add
 Then the result should be 3 on the screen

features/2_CALC-7935.feature

@REQ_CALC-7935
Feature: As a user, I can multiply two numbers
 #As a user, I can multiply two numbers

 #simple integer multiplication
 @TEST_CALC-7936
 Scenario: simple integer multiplication
 Given I have entered 3 into the calculator
 And I have entered 0 into the calculator
 When I press multiply
 Then the result should be 0 on the screen

To run the tests and produce a Cucumber JSON report, we can run Maven and specify that we want a report in Cucumber JSON format and that it should
process .features from the directory.features/

mvn compile test -Dcucumber.plugin="json:report.json" -Dcucumber.features="features/"

This will produce one Cucumber JSON report with all results.

After running the tests, results can be imported to Xray via the REST API, or the action within an existing Test Execution, or by Import Execution Results
using one of the available CI/CD plugins (e.g. see an example of).Integration with Jenkins

example of a Bash script to import results using the standard Cucumber endpoint

curl -H "Content-Type: application/json" -X POST -u admin:admin --data @"report.json" http://jiraserver.example.
com/rest/raven/1.0/import/execution/cucumber

Please note

As the report format in Cucumber JSON is being deprecated in favour of , a protocol buffer based implementation, the Cucumber Messages
previous command needs to be adapted slightly.

The report starts by being generated in Cucumber Messages, using "-f message" argument, and then converted to the legacy Cucumber JSON
report using the tool .cucumber-json-formatter

mvn compile test -Dcucumber.plugin="json:report.ndjson" -Dcucumber.features="features/"
cat report.ndjson | cucumber-json-formatter --format ndjson > report.json

1.
2.

Which Cucumber endpoint to use?

To import results, you can use two different endpoints/"formats" (endpoints described in):Import Execution Results - REST

the "standard cucumber" endpoint
the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. is simpler but more restrictive: you cannot specify values for custom fields /import/execution/cucumber)
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan), if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins
https://github.com/cucumber/cucumber/tree/master/json-formatter
https://github.com/cucumber/cucumber/tree/master/json-formatter
https://docs.getxray.app/display/XRAY500/Import+Execution+Results+-+REST

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

Results, including for each example on Scenario Outline, can be expanded to see all Gherkin statements.

Note: in this case, the bug was added on purpose on the Calculator class.

buggy Multiply() method in Calculator.java

// Multiply two integers and retuns the result... this code is buggy on purpose
public static int Multiply(int num1, int num2)
{
 if (num1==0) {
 return num2;
 } else if (num2==0) {
 return num1;
 } else {
 return num1 * num2;
 }
}

Results are reflected on the covered items (e.g. Story issues) and can be seen in ther issue screen.

Coverage now shows that the addition related user story (e.g. CALC-7931) is OK based on the latest testing results; on the other hand, the multiplication
related user story (CALC-7935) is NOK since it has one test currently failing.

Screenshots and other attachments

If available, it is possible to see also attached screenshot(s). For this, you'll need to use Cucumber's API and do it in a After hook, for example
(using scenario.embed()).

The icon represents the evidences ("embeddings") for each and .Hook, Background Steps

If we fix the code on the Calculator class, run the tests and import results, coverage for the multiplication related user story will be shown as OK.

1.
2.

3.
4.
5.
6.
7.
8.
9.

10.

fix of Multiply() method in Calculator.java

public static int Multiply(int num1, int num2)
{
 return num1 * num2;
}

Using Git or other VCS as master

You can edit your .feature files using your IDE outside of Jira (eventually storing them in your VCS using Git, for example) alongside with remaining test
code.

In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility of them and report results against them.

The overall flow would be something like this:

look at the existing "requirement"/Story issue keys to guide your testing; keep their issue keys
specify Cucumber/Gherkin .feature files in your IDE supporting Cucumber/Gherkin and store it in Git, for example. Meanwhile, you may decide to
import/synchronize them Xray to provision or update corresponding Test and/or Precondition entities
implement the code related to Gherkin statements/steps and store it in Git, for example.
commit code and .feature file(s) to Git
checkout the code from Git
import/synchronize the .feature files to Xray to provision or update corresponding Test and/or Precondition entities
export/generate .feature files from Jira, so that they contain references to Tests and requirements in Jira
run the tests in the CI
obtain the report in Cucumber JSON format
import the results back to Jira

Note that steps (5-10) performed by the CI tool are all automated, obviously.

To import .features to Jira we can either use the REST API or a CI tool. To export tagged .features from Jira, we can do it directly from Jira, by the REST
API or using a CI tool; we'll see that ahead in more detail.

Step-by-step

All starts with a user story or some sort of “requirement” that you wish to validate. This is materialized as a Jira issue and identified by the corresponding
issue key (e.g. CALC-7931).

We can promptly check that it is “UNCOVERED” (i.e. that it has no tests covering it, no matter their type/approach).

Having those to guide testing, we could then describe and implement the Cucumber test scenarios using our favourite IDE.

The related statement's code is managed outside of Jira and stored in Git, for example.

The tests related code is stored under directory, which itself contains several other directories. In this case, they're organized as follows:src/test

java/calculator: step implementation files and test runner class.

The steps "glue-code" is defined in the StepDefinitions class.

src/test/java/calculator/StepDefinitions.java

package calculator;

import io.cucumber.java.en.Given;
import io.cucumber.java.en.Then;
import io.cucumber.java.en.When;
import com.xray.tutorials.Calculator;

import static org.junit.Assert.*;

public class StepDefinitions {
 private Integer int1;
 private Integer int2;
 private Integer result;

 @Given("I have entered {int} into the calculator")
 public void i_have_entered_into_the_calculator(Integer int1) {
 this.int2 = this.int1;
 this.int1 = int1;
 }

 @When("I press add")
 public void i_press_add() {
 this.result = Calculator.Add(this.int1, this.int2);
 }

 @When("I press multiply")
 public void i_press_multiply() {
 this.result = Calculator.Multiply(this.int1, this.int2);
 }

 @Then("the result should be {int} on the screen")
 public void the_result_should_be_on_the_screen(Integer value) {
 assertEquals(value, this.result);
 }

}

the test runner is defined in the RunCucumberTest class. Cucumber options can be overriden from the command line, whenever executing
Maven.

src/test/java/calculator/RunCucumberTest.java

package calculator;

import io.cucumber.junit.Cucumber;
import io.cucumber.junit.CucumberOptions;
import org.junit.runner.RunWith;

@RunWith(Cucumber.class)
@CucumberOptions(plugin = {"pretty"})
public class RunCucumberTest {

}

Before running the tests in the CI environment, you need to import your .feature files to Xray/Jira; you can invoke the REST API directly or use one of the
available plugins/tutorials for CI tools.

example of a shell script to import/synchronize .features to Jira and Xray

rm -f features.zip
zip -r features.zip src/test/resources/calculator/ -i *.feature
curl -H "Content-Type: multipart/form-data" -u admin:admin -F "file=@features.zip" "http://jiraserver.example.
com/rest/raven/1.0/import/feature?projectKey=CALC"

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the UI action from within the Test Export to Cucumber
/Test Execution issue or even based on an existing saved filter. As source, you can identify Test, Test Set, Test Execution, Test Plan or "requirement"
issues. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

use one of the available CI/CD plugins (e.g. see details of)Integration with Jenkins

Please note

Each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again then Xray can
update the existent Test and don't create any duplicated tests. See for details on how it works.Importing Cucumber Tests - REST

https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY/Importing+Cucumber+Tests+-+REST

use the REST API directly (more info) here

#!/bin/bash

rm -f features/*.feature
curl -u admin:admin "http://jiraserver.example.com/rest/raven/1.0/export/test?keys=CALC-7931;CALC-
7935&fz=true" -o features.zip
unzip -o features.zip -d features

... or even use the UI (e.g. from a Test issue)

We will export the features to a new directory named features/ on the root folder of your Java project (we'll need to tell Maven to use this folder).

After being exported, the created .feature(s) will contain references to the Test issue key, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in .Export Cucumber Features backup

https://docs.getxray.app/display/XRAY500/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/pages/viewpage.action?pageId=62271186

features/1_CALC-7931.feature

@REQ_CALC-7931
Feature: As a user, I can calculate the sum of two numbers
 #As a user, I can calculate the sum of two numbers

 #Tests As a user, I can calculate the sum of two numbers
 @TEST_CALC-7934
 Scenario Outline: sum of two positive numbers
 Given I have entered <input_1> into the calculator
 And I have entered <input_2> into the calculator
 When I press <button>
 Then the result should be <output> on the screen

 Examples:
 | input_1 | input_2 | button | output |
 | 20 | 30 | add | 50 |
 | 2 | 5 | add | 7 |
 | 0 | 40 | add | 40 |
 | 4 | 50 | add | 54 |
 | 5 | 50 | add | 55 |

 @TEST_CALC-7933
 Scenario: negative integer adition
 Given I have entered -1 into the calculator
 And I have entered 2 into the calculator
 When I press add
 Then the result should be 1 on the screen

 #Tests As a user, I can calculate the sum of two numbers
 @TEST_CALC-7932
 Scenario: simple integer addition
 Given I have entered 1 into the calculator
 And I have entered 2 into the calculator
 When I press add
 Then the result should be 3 on the screen

features/2_CALC-7935.feature

@REQ_CALC-7935
Feature: As a user, I can multiply two numbers
 #As a user, I can multiply two numbers

 #simple integer multiplication
 @TEST_CALC-7936
 Scenario: simple integer multiplication
 Given I have entered 3 into the calculator
 And I have entered 0 into the calculator
 When I press multiply
 Then the result should be 0 on the screen

To run the tests and produce a Cucumber JSON report, we can run Maven and specify that we want a report in Cucumber JSON format and that it should
process .features from the directory.features/

mvn compile test -Dcucumber.plugin="json:report.json" -Dcucumber.features="features/"

This will produce one Cucumber JSON report with all results.

After running the tests, results can be imported to Xray via the REST API, or the action within an existing Test Execution, or by Import Execution Results
using one of the available CI/CD plugins (e.g. see an example of).Integration with Jenkins

example of a Bash script to import results using the standard Cucumber endpoint

curl -H "Content-Type: application/json" -X POST -u admin:admin --data @"report.json" http://jiraserver.example.
com/rest/raven/1.0/import/execution/cucumber

Please note

As the report format in Cucumber JSON is being deprecated in favour of , a protocol buffer based implementation, the Cucumber Messages
previous command needs to be adapted slightly.

The report starts by being generated in Cucumber Messages, using "-f message" argument, and then converted to the legacy Cucumber JSON
report using the tool .cucumber-json-formatter

mvn compile test -Dcucumber.plugin="json:report.ndjson" -Dcucumber.features="features/"
cat report.ndjson | cucumber-json-formatter --format ndjson > report.json

1.
2.

Which Cucumber endpoint to use?

To import results, you can use two different endpoints/"formats" (endpoints described in):Import Execution Results - REST

the "standard cucumber" endpoint
the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. is simpler but more restrictive: you cannot specify values for custom fields /import/execution/cucumber)
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan), if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins
https://github.com/cucumber/cucumber/tree/master/json-formatter
https://github.com/cucumber/cucumber/tree/master/json-formatter
https://docs.getxray.app/display/XRAY500/Import+Execution+Results+-+REST

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

Results, including for each example on Scenario Outline, can be expanded to see all Gherkin statements.

Note: in this case, the bug was added on purpose on the Calculator class.

buggy Multiply() method in Calculator.java

// Multiply two integers and retuns the result... this code is buggy on purpose
public static int Multiply(int num1, int num2)
{
 if (num1==0) {
 return num2;
 } else if (num2==0) {
 return num1;
 } else {
 return num1 * num2;
 }
}

Results are reflected on the covered items (e.g. Story issues) and can be seen in ther issue screen.

Coverage now shows that the addition related user story (e.g. CALC-7931) is OK based on the latest testing results; on the other hand, the multiplication
related user story (CALC-7935) is NOK since it has one test currently failing.

Screenshots and other attachments

If available, it is possible to see also attached screenshot(s). For this, you'll need to use Cucumber's API and do it in a After hook, for example
(using scenario.embed()).

The icon represents the evidences ("embeddings") for each and .Hook, Background Steps

If we fix the code on the Calculator class, run the tests and import results, coverage for the multiplication related user story will be shown as OK.

fix of Multiply() method in Calculator.java

public static int Multiply(int num1, int num2)
{
 return num1 * num2;
}

FAQ and Recommendations
Please see .this page

References
Code used in this tutorial, along with some auxiliary scripts
Sample project cucumber-java-skeleton
Official Cucumber documentation
Cucumber installation instructions for Java
Cucumber API
Cucumber expressions
Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
Automated Tests (Import/Export)
Exporting Cucumber Tests - REST

https://docs.getxray.app/pages/viewpage.action?pageId=62267221#TestinginBDDwithGherkinbasedframeworks(e.g.Cucumber)-Commonproblems
https://github.com/bitcoder/cucumber-java-calc
https://github.com/cucumber/cucumber-java-skeleton
https://cucumber.io/docs/cucumber/
https://cucumber.io/docs/installation/java/
https://cucumber.io/docs/cucumber/api/
https://cucumber.io/docs/cucumber/cucumber-expressions/
https://docs.getxray.app/pages/viewpage.action?pageId=62267221
https://docs.getxray.app/pages/viewpage.action?pageId=62271185
https://docs.getxray.app/display/XRAY/Exporting+Cucumber+Tests+-+REST

	Testing using Cucumber in Java

