Integration with Jenkins

® Qverview

® Release Notes
® [nstallation
© Manual Installation
© Jenkins Native Installation (via web Ul)
® Configuration
© Credential permissions
o Jira Instance
® Creating a new Project
® Build Steps
© Xray: Cucumber Features Export Task
= Configuration
O Xray: Cucumber Features Import Task
© Xray: Results Import Task
= Configuration
" Additional fields
© Xray: Build Environment Variables
® Examples
© Cucumber
= Exporting Cucumber features
® |mporting Cucumber features
® |mporting the execution results
" |mporting the execution results with user-defined field values
© JUnit
® |mporting the execution results
® Pipeline projects support
© Step: XraylmportBuilder (import test execution results)
O Step: XrayExportBuilder (export cucumber features from Jira to Jenkins)
O Step: XraylmportFeatureBuilder (import cucumber features from Jenkins to Jira)
© Cucumber Workflow suggestions
= Cucumber ("standard" workflow)
® Cucumber ("VCS/Git based" workflow)
© Using parameters
© Recommendations
® Jira instances configuration via Groovy script (Jenkins Script Console)
® Troubleshooting
O The build process is failing with status code 403
© The Jira xxx configuration of this task was not found

Overview

Xray enables easy integration with Jenkins through the "Xray for JIRA Jenkins Plugin®, providing the means for successful Continuous Integration by
allowing users to report automated testing results.

Release Notes

® Xray for Jira Jenkins Plugin 2.6.1 Release Notes

https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.6.1+Release+Notes

Xray for Jira Jenkins Plugin 2.6.0 Release Notes
Xray for Jira Jenkins Plugin 2.5.3 Release Notes
Xray for Jira Jenkins Plugin 2.5.2.1 Release Notes
Xray for Jira Jenkins Plugin 2.5.1 Release Notes
Xray for Jira Jenkins Plugin 2.5.0 Release Notes
Xray for Jira Jenkins Plugin 2.4.1 Release Notes
Xray for Jira Jenkins Plugin 2.4.0 Release Notes
Xray for Jira Jenkins Plugin 2.3.1 Release Notes
Xray for Jira Jenkins Plugin 2.3.0 Release Notes
Xray for Jira Jenkins Plugin 2.2.0 Release Notes
Xray for Jira Jenkins Plugin 2.1.2 Release Notes
Xray for Jira Jenkins Plugin 2.1.1 Release Notes
Xray for JIRA Jenkins Plugin 2.0.0 Release Notes

Installation

The installation is made manually. For more information on how to install add-ons, please refer to how to install add-ons.

@ Requirements

The Jenkins baseline for this app is v2.138.4 and it may not work properly with previous versions.

Manual Installation

@ Download the latest version of the Jenkins Plugin

You may download the latest version of the Jenkins plugin from the latest Release Notes.

If you have the actual xr ay- connect or . hpi file,
1. Go to the Update Center of Jenkins in Manage Jenkins > Manage Plugins.

2. Select the Advanced tab
3. In the Upload Plugin section, click upload and select the file xr ay- connect or . hpi file.

Jenkins Native Installation (via web Ul)

Since version 2.1.0, you can install the plugin by using the Jenkins native Web Ul. You can read more about how to do it here.

Configuration

Xray for Jenkins is configured in the global settings configuration page Manage Jenkins > Configure System > Xray for Jira configuration.

Credential permissions

If you want to ket your Jenkins' users to use their own Jira credentials in each build, you need to make sure that the users that need to configure the jobs
have both USE ITEM and USE OWN permissions.

These permissions are not configurable in the Credentials plugin by default, you need to run your Jenkins instance with the following flags enabled:

- Dcom cl oudbees. pl ugi ns. credenti al s. UseOanPer nm ssi on=t r ue - Dcom cl oudbees. pl ugi ns. credenti al s.
Usel t enPer m ssi on=true

After enabling these flags, go to the Credentials plugin configuration page, and give the required users the USE ITEM and USE OWN permissions.

You can read more about these permissions in the official CloudBees documentation.

Jira Instance

The Jira configuration defines connections with Jira instances.

https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.6.0+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.5.3+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.5.2.1+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.5.1+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.5.0+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.4.1+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.4.0+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.3.1+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.3.0+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.2.0+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.1.2+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+Jira+Jenkins+Plugin+2.1.1+Release+Notes
https://docs.getxray.app/display/XRAYCLOUD/Xray+for+JIRA+Jenkins+Plugin+2.0.0+Release+Notes
https://jenkins.io/doc/book/managing/plugins/
https://jenkins.io/doc/book/managing/plugins/#from-the-web-ui
https://docs.cloudbees.com/docs/cloudbees-ci/latest/cloud-secure-guide/authentication-mapping

To add a new Jira instance connection, you need to specify some properties:

1. Configuration alias
2. Hosting: Hosting (instance type) in this case Cloud.
3. Server Address: The address of the Jira Server where Xray is running
4. Credentials:
a. Use the Jenkins Credentials Plugin to set the API key/secret (please check Global Settings: API Keys for more info on creating API
keys)
b. Make sure that was used to create the API key has the following permissions in the projects where you want to import the results and
import/export feature files: View, Edit, Create.
c. This field is optional - if you don't want to use a System scoped credential to authenticate in your instance, you can leave this field
empty and force the users to use a User scoped credential in the build task.
d. To add a new Credential:

i. Xray Client ID should be placed in the Username field
ii. Xray Client Secret should be placed in the Password field

Note: the Configuration ID is not editable. This value can be used in the pipeline scripts.

@ Please note

The user present in this configuration must exist in the Jira instance and have permission to Create Test and Test Execution Issues in the target

project

Configuration ID 7480b626-eb53-4a78-82(6-a36333e1091d

Configuration alias

Hosting

Credentials

my cloud instance

| Cloud |

Add -
40D7EG9FF7D64A739320EE058D284BCT/* """ & s

o ,
Connection: Success! Test Connection

Delete instance

Creating a new Project

The project is where the work that should be performed by Jenkins is configured.

For this app, you can configure:

® Freestyle projects

® Maven Projects

® Multi-configuration Projects
® Pipeline Projects

On the home page, click for example New Item > Freestyle project, provide a name, and then click OK.

https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+API+Keys

Enter an item name

‘ Xray project

Freestyle project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be even used for something other than software build.

Pipeline
Orchestrates long-running activities that can span muttiple build slaves. Suitable for building pipelines (formerly known as workflows) and/or organizing complex activities that do not easily fit in free-style job type.

External Job

This type of job allows you to record the execution of a process run outside Jenkins, even on a remote machine. This is designed so that you can use Jenkins as a dashboard of your existing automation system.

Multi-configuration project
Suitable for projects that need a large number of different configurations. such as testing on multiple environments, platform-specific builds, efc.

Folder
Creates a container that stores nested items in it. Useful for grouping things together. Unlike view, which is just a filter, a folder creates a separate namespace, S0 you can have multipie things of the same name as

long as they are in different folders.

GitHub Organization

) Scans a GitHub organization (or user account) for all repositories matching some defined markers.

Multibranch Pipeline
Creates a set of Pipeline projects according to detected branches in one SCM repository.

if you want to create a new item from other existing, you can use this option

@

Copy from ‘ Type to autocomplete

‘DK

Build Steps

Build steps are the building blocks of the build process. These need to be defined in the project configuration.

The app provides

® one build step for exporting Cucumber Scenario/Scenario Outlines from Jira as .feature files
® one build step for importing Cucumber Tests from existing Cucumber features into Jira.
® one post-build action which publishes the execution results back to Jira, regardless of the build process status.

@ Please note

The fields of the tasks may take advantage of the Jenkins Environment variables, which can be used to populate fields such as the "Revision"
for specifying the source code's revision. For more information, please see Jenkins set environment variables.

Xray: Cucumber Features Export Task

This build step will export the Cucumber Tests (i.e., Scenario/Scenario Outlines) in .feature or bundled in a .zip file. The rules for exporting are defined here.

It invokes Xray's Export Cucumber Tests REST API endpoint (see more information here).

Configuration

Some fields need to be configured in order to export the Cucumber Tests. As input, you can either specify issue keys (see the endpoint documentation here

) or the ID of the saved filter in Jira.

field

Jira
instan
ce

Crede
ntials

Issue
keys

description

The Jira instance where Xray is running

If the above Jira Instance does not have any credential configured, you must define an User scoped credential here

Set of issue keys separated by ";"

https://docs.getxray.app/display/XRAYCLOUD/Generate+Cucumber+Features
https://docs.getxray.app/display/XRAY/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAY/Exporting+Cucumber+Tests+-+REST
https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-belowJenkinsSetEnvironmentVariables

Filter A number that indicates the filter ID

ID
File The relative path of the directory where the features should be exported to; normally, this corresponds to the "features" folder of the Cucumber
path project that has the implementation steps. Note: The directory will be created if it does not exist.

Xray: Cucumber Features Import Task

This build step will import existing cucumber Tests from existing Cucumber feature files into Xray issues. This Task will import from .feature files and also
from .zip files.

It invokes Xray's Import Cucumber Tests REST API endpoint (see more information here)

field description
Jira instance The Jira instance where Xray is running.
Credentials If the above Jira Instance does not have any credential configured, you must define an User scoped credential here
Project Key This is the project where the Tests and Pre-Conditions will be created/updated.
Cucumber feature files This is the directory containing your feature files. All the files in this directory and sub directories will be imported. Supports
directory both relative and absolute paths.

Modified in the last hours | By entering an integer n here, only files that where modified in the last n hours will be imported.
Leave empty if you do not want to use this parameter.

Xray: Results Import Task

The app provides easy access to Xray's Import Execution Results REST API endpoints (see more information here). Therefore, it mimics the endpoints
input parameters.

It supports importing results in Xray's own JSON format, Cucumber, JUnit, XUnit and NUnit, among others.
Using a glob expression, you can import multiple results files in the following formats:

JUnit

TestNG

NUnit

XUnit

Robot framework

For those formats, the file path needs to be relative to the workspace.

Configuration

field description
Jira instance The Jira instance where Xray is running
Credentials If the above Jira Instance does not have any credential configured, you must define an User scoped credential here
Format A list of test result formats and its specific endpoint

Execution Report File = The results relative or absolute file path.
Note: glob expressions are supported for

JUnit

JUnit Multipart

TestNG

TestNG Multipart

NUnit

NUnit Multipart

XUnit

XUnit Multipart

Robot framework

Robot framework Multipart

Additional fields

https://docs.getxray.app/display/XRAY/Importing+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAY/Import+Execution+Results+-+REST

Depending on the chose test result format and endpoint, some additional fields may need to be configured.

format and specific
endpoint

Cucumber JSON multipart
NUnit XML multipart
JUnit XML multipart
XUnit XML multipart
Robot XML multipart

TestNG XML multipart

NUnit XML
JUnit XML
XUnit XML
Robot XML

TestNG XML

field

Import to Same
Test Execution

Test execution
fields

Import in parallel
Import to Same
Test Execution
Project key

Test execution
key

Test plan key

Test
environments

Revision
Fix version

Import in parallel

description

When this option is check, if you are importing multiple execution report files using a glob expression,
the results will be imported to the same Test Execution

An object (JSON) specifying the fields for the issue. You may specify the object either directly in the
field or in the file path.

@ Learn more

The custom field IDs can be obtained using the Jira REST API Browser tool included in
Jira. Each ID is of the form "customfield_ID".

Another option, which does not require Jira administration rights, is to invoke the "Get edit
issue meta" in an existing issue (e.g., in a Test issue) as mentioned here.

Example: GET https://lyour-domain.atlassian.net/rest/api/3/issue/{issueldOrKey}
/editmeta

Test Fields

0]

Please notice that currently only the Test Execution Fields are supported. If you need to
use the Test Field you may need to make a direct call (e.g. using CURL) to our REST API.

If there are several result files, when this checkbox is selected, we will import all the files in parallel
(using all available CPU cores)

When this option is check, if you are importing multiple execution report files using a glob expression,
the results will be imported to the same Test Execution

Key of the project where the Test Execution (if the Test Execution Key field wasn't provided) and the
Tests (if they aren't created yet) are going to be created

Key of the Test Execution

Key of the Test Plan

List of Test Environments separated by ";"

Source code's revision being target by the Test Execution
The Fix Version associated with the test execution (it supports only one value)

If there are several result files, when this checkbox is selected, we will import all the files in parallel
(using all available CPU cores)

Xray: Build Environment Variables

Since version 2.2.0, the Xray plugin will now set some build environment variables according to the operation result after each of the Xray Steps

mentioned above.

Build
Environment
Variable Name

XRAY_IS_REQUES
T_SUCCESSFUL

XRAY_ISSUES_MO
DIFIED

Meaning and Value

Contains the string 'true’ if all requests made by the step were successful, or 'false’ otherwise.

All Issue keys that were modified and/or created by the step, separated by ;' with no duplicated entries (E.g. 'CALC-100;CALC-
101;CALC-102).

https://docs.atlassian.com/jira/REST/server/#api/2/issue-getEditIssueMeta

XRAY_RAW_RESP The unprocessed JSON response of all requests made by the step, separated by ';'.
ONSE

XRAY_TEST_EXECS All Test Execution Issue keys that were modified and/or created by the step, separated by ';' with no duplicated entries (E.g.
'CALC-200;CALC-201;CALC-202").

Please note that in same cases, it will be not possible to determine the issue type of the Issue key returned in the request
response and in that case, the key it will only be added to the XRAY_ISSUES_MODIFIED variable.

XRAY_TEST All Test Issue keys that were modified and/or created by the step, separated by ';' with no duplicated entries (E.g. 'CALC-300;
CALC-301;CALC-302").

Please note that in same cases, it will be not possible to determine the issue type of the Issue key returned in the request

response and in that case, the key it will only be added to the XRAY_ISSUES_MODIFIED variable.

@ Pipeline Project Limitations

Due to Jenkins limitations, these variables will not be set on Pipeline projects.

Xray: Cucumber Features Import Task (2]
Jira Instance localhost s @
Project Key CALC (7)
Cucumber feature files directory | features/ ()]
Modified in the last hours '@'

Execute shell ®

Command echo "Post Import"
echo $XRAY IS REQUEST SUCCESSFUL
echo $XRAY RAW RESPONSE
echo $XRAY_ISSUES_MODIFIED
echo $XRAY TESTS
echo $XRAY TEST EXECS

See the list of available environment variables

Advanced...

Examples

Cucumber

In a typical Cucumber Workflow, after having created a Cucumber project and the Cucumber tests specified in Jira, you may want to have a project that ex
ports the features from Jira, executes the automated tests on a ClI environment and then imports back its results.

For this scenario, the Jenkins project would be configured with a set of tasks responsible for:
1. Pulling the Cucumber project
2. Exporting Cucumber features from Jira to your Cucumber project

3. Executing the tests in the ClI environment
4. Importing the execution results back to Jira

Exporting Cucumber features

To start the configuration, add the build step Xray: Cucumber Features Export Task.

https://docs.getxray.app/display/XRAY/Testing+with+Cucumber

Add build step -

Execute Windows batch command
| Execute shell
Invoke Ant
Invoke Gradle script
Invoke top-level Maven targets
Run with timeout
Set build status to "pending” on GitHub commit

‘}{ray: Cucumber Features Export Task

After that, configure it.

In this example, we configured the task to extract the features from a set of issues (PROJ-78 and PROJ-79) to the folder that holds the Cucumber project.

Xray: Cucumber Features Export Task E
JIRA Instance Xray local v
Issues: PROJ-78,PROJ-79 -
Filter- @
File Path: features @

Importing Cucumber features

To start the configuration, add the build step Xray: Cucumber Features Import Task.

Build

Add build step ~

FailureBuilder

Invaoke Ant

Invoke Gradle script

Invoke top-level Maven targeis

MockBuilder

Run with timeout

Sef build status to "pending” on GitHub commit
SleepBuilder

UnstableBuilder

Xray: Cucumber Features Export Task

Xray: Cucumber Features Import Task R S

= |

After that, configure it.

In this example, we configured the task to import to the Project IF of the Xray instance all the .features and .zip files that are contained in \Cucumber
directory and sub directories, which were modified in the last 3 hours.

Build

Xray: Cucumber Features Import Task

Jira Instance Xray instance
Project Key IF
Cucumber feature files directory | \Cucumber

Modified in the last hours 3

Add build step ~

Importing the execution results

To start the configuration, add the post-build action Xray: Results Import Task.

Aggregate downstream test results
Archive the artifacts

Build other projects

Publish JUnit test result repart

Publish Javadoc

Record fingerprints of files to track usage
Git Publisher

E-mail Matification

Editable Email Motification

Set GitHub commit status (universal)
Set build status on GitHub commit [deprecated]

’ ¥ray: Results Import Task

Delete waorkspace when build is done

Add post-build action -

After that, configure it.

In this example, we configured the task to import the Cucumber JSON results back to Jira.
Xray: Results Import Task
JIRA Instance | Xray local

Format Cucumber JSON

Parameters
Execution Report File (file path with file name) | report.json

Once all configurations are done, click Save at the bottom of the page.

After running the job, the expected result is a new Test Execution issue created in the Jira instance.

® ©9®

® ®

Search saveas = T
CALC~ TestExecutionv Status: All¥ Assignee: All v Contains text Morev Q Advanced =v
Created Date: Within the last... v

Hof1S Columns ¥
T Key Summary Assignee Reporter P 4 Status Resolution Created Updated Due

D cAaLc-26 Execution results [1565102250271] viyi viyi viyi viyi 1+ TODO Unresolved 06/Augf19 06/Aug/19

Importing the execution results with user-defined field values

For Cucumber, XUnit, JUnit, Nunit and Robot, Xray for Jenkins allows you to create new Test Executions and have control over newly-created Test
Execution fields. You can send two files, the normal execution result file and a JSON file similar to the one Jira uses to create new issues. More details
regarding how Jira creates new issues here.

For this scenario and example, the import task needs to be configured with the Cucumber JSON Multipart format. When selecting this option, you can
additionally configure the Test Execution fields in one of two ways:

® [nsert the relative path to the JSON file containing the information, or
® [Insert the JSON content directly in the field.

In this example, we configured the following object:

{
"fields": {
"project": {
"key": "PRQI"
1,
"summary": "Test Execution for Cucunber results (Generated by job: ${BU LD TAG)",
"issuetype": {
"id": "10102"
}
}
}

And configured the task to import the Cucumber JSON Multipart results back to Jira.

Once all configurations are done, click Save at the bottom of the page.

After running the job, the expected result is a new Test Execution issue created in the Jira instance, with the Test Execution fields as specified in the
Jenkins build step configuration.

Project: Al Type: All~ Staius: All* Assignee: All » More ~ Q Advanced =~

Created Date: Within the last ... ~

1ot 5 Columns ~
T Key Summary Tests association with a Test Execution Status Created & Updated Test Environments Labels
| PROJ-479 Test Execution for Cucumber results (Generated by job: jenkins-Xray Automated Tests-26) PROJ-78 OPEN O4/ApIAT O4/APT17 None None

Apart from supporting Cucumber natively, Xray enables you to take advantage of many other testing frameworks like JUnit. In this sense, Xray for Jenkins
lets you import results in other formats besides Cucumber JSON.

If you want to import JUnit XML reports, a typical Job outline would be:
1. Pulling the JUnit project

2. Executing the tests in the ClI environment
3. Importing the execution results, including Tests, to JIRA

https://developer.atlassian.com/jiradev/jira-apis/about-the-jira-rest-apis/jira-rest-api-tutorials/jira-rest-api-example-create-issue

Xray: Results Import Task

Jira Instance | My Jira Server Instance
Format JUnit XML multipart

Parameters

Import to Same Test Execution

expression, the results will be imported to the same Test Execution

Cxecution Report File (file path with file name) | my/file/path/**/*.xml

Test Execution fields JSON Content

{
"fields": {
"project”: {
“id": "10402"
»
"summary": "Test Execution for junit Execution”,
"iSSI.IQl'pr": {
“id": "10007"
»
“componems" : [
{
"name":"Interface”
%
{
"name":"Core"
}
1
}
)

Click here for more details

Importing the execution results

To start the configuration, add the post-build action Xray: Results Import Task.

Aggregate downstream test results
Archive the artifacts

Build other projects

Publish JUnit test result repaort

Publish Javadoc

Record fingerprints of files to track usage
Git Publisher

E-mail Matification

Editable Email Motification

Set GitHub commit status (universal)
Set build status on GitHub commit [deprecated]

’ ¥ray: Results Import Task

Delete waorkspace when build is done

Add post-build action -

After that, configure it.

In this example, we have a configuration where the JUnit XML format is chosen.

When this option is check, if you are importing multiple execution report files using a glob

“*

-«

“»

Xray: Results Import Task

JIRA Instance | cloud prod

Format JUnit XML

“»

Parameters
Import to Same Test Execution

When this option is check, if you are importing multiple execution report files using a glob
expression, the results will be imported to the same Test Execution

Execution Report File (file path with file name) java-junit-calc/target/surefire-reports/TEST-com.xpand.java.CalcTest.xml

Project Key CALC
Test Execution Key CALC-1
Test Plan Key CALC-10
Test Environments env
Revision

Fix Version 1.0

Click here for more details

Add post-build action

After running the plan, the expected result is a new Test Execution issue created in the JIRA instance.

Search saveas

[=S BN
CALC v TestExecution v Status: Allv Assignee: All v Contains text Morev Q Advanced =
Created Date: Within the last... v

1015 Columns v
T Key Summary Assignee Reporter P 4 Status Resolution Created Updated Due
B caLc-25 Execution results [1565097919658] wviyi viyi wviyi viyi N TODO Unresolved 08/Aug/19 08/Aug/19

You can also import multiple results using a glob expression, like in the following example

Xray: Results Import Task

JIRA Instance | cloud prod

@

Format Junit XML

@

Parameters
Import to Same Test Execution

When this option is check, if you are importing multiple execution report files using a glob
expression, the results will be jmported to the same Test Execution

Execution Report File (file path with file name) | java-junit-calcftarget/**/*.xml

Project Key CALC
Test Execution Key CALC-1
Test Plan Key CALC-10
Test Environments env
Revision

Fix Version 10

Click here for more details

Add post-build action ~

Pipeline projects support

Xray for Jenkins provides support for pipelines projects, allowing you to use Xray specific tasks.

Enter an item name

My Pipeline Demo

» Required field

.4 Freestyle project
1#
: Isto & uma caracteristica central do Jenkins. Jenkins vai construir o seu projecto, combinando qualquer SCM com qualquer sistema de compilacdio e isto pode ser usado mesmo em qualquer outra

compilacdo de software.

Maven project
‘ﬁ' Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the configuration

Pipeline
‘-,{'J | Orchestrates long-running activities that can span multiple build slaves. Suitable for building pipelines (formerly known as workflows) and/or organizing complex activities that do not easily fit in free-style ——
job type

Construir Build projeto com multi-configuragdes
,' Suitable for projects that need a large number of different configurations, such as testing on multiple environments, platform-specific builds, etc.

Folder

Creates a container that stores nested items in it. Useful for grouping things together. Unlike view, which is just a filter, a folder creates a separate namespace, S0 you can have multiple things of the
same name as long as they are in different folders.

GitHub Organization
Scans a GitHub organization (or user account) for all repositories matching some defined markers

& Multibranch Pipeline
{ " -~ Creates a set of Pipeline projects according to detected branches in one SCM repository.

@ MockFolder
@ MockFolder with security control

if you want to create a new item from other existing, you can use this option:

‘ OK ‘ rom ‘T}'QE[DBUIDCDIHDEIE

There are 3 available steps to be used in a Pipeline project:
® Xrayl nportBuil der - Import test results (Junit, NUnit, etc...) from your Jenkins job to Jira

® XrayExportBuil der - Export feature files from Jira to your Jenkins job workspace
® Xrayl nport Feat ur eBui | der - Import feature files from Jenkins to Jira

{:D Generated syntax helper

For each of the steps mentioned above, you can check the generated syntax reference in the official Jenkins documentation website.

See and try some examples by yourself

Please see a tutorial with working Examples using Jenkins pipeline, showcasing different scenarios, which you can download and try by yourself.

Step: XraylmportBuilder (import test execution results)

Parameter Required? Type Description

serverlnsta Yes String The ID of the Jira instance configured in the Jenkins System Configuration
nce

#
https://www.jenkins.io/doc/pipeline/steps/xray-connector/#stepclass-xrayimportbuilder-xray-results-import-task
https://docs.getxray.app/display/XRAYCLOUD/Jenkins+pipeline+integration

endpoi nt Nanme

pr oj ect Key

importFileP
ath

credentialld

test Environ
nents

t est Pl anKey

fixVersion

t est ExecKey

revision

i mportlnfo

i nput I nf oSw
itcher

testlnportl
nfo

inputTestIn
f oSwi t cher

i mport ToSam
eExecution

i mport | nPar
al l el

Yes

Yes

Yes

Yes, if the Jira instance was configured without
credentials in System Configuration

No

No

No

No

No

Yes, if multipart endpoint

Yes, if i mport | nf o is being used

No

Yes, if test I mport | nfois being used

No

No

String

String

String

String

String

String

String

String

String

String

String

String

String

String

String

The result file type to be imported. Allowed Values:
" (Xray Json format)

"Imultipart” (Xray JSON multipart format)

"lcucumber”

"/cucumber/multipart”

"/behave"

"/behave/multipart"

"fjunit"

"fjunit/multipart"

"/nunit"

"/nunit/multipart”

"/robot"

"/robot/multipart”

"/bundle” (import of zip file with several cucumber results)
"ltestng”

"/testng/multipart”

"Ixunit"

"/xunit/multipart"

Please note that not all endpoints are available for Jira Sever/Cloud. Please refer to
the REST API documentation to see what is available in your instance.

The Jira project key where you want to import your results

File path where the result files can be found.

Credential ID from the Credentials plugin to be used to authenticate the Jira requests

Test environments to be added to the Test Execution issue, separated by ";".
! This value will only be used if the endpoi nt Nane is not multipart

All Tests will be added to the given Test Plan key, if provided.
! This value will only be used if the endpoi nt Nane is not multipart

Fix version to be added to the Test Execution issue.
! This value will only be used if the endpoi nt Name is not multipart

Key of the test Execution issue to be updated. Leave empty to create a new issue
with the import.

! This value will only be used if the endpoi nt Nane is not multipart
Source code and documentation version used in the test execution.
! This value will only be used if the endpoi nt Nane is not multipart
File path to the Test Execution info file OR JSON String with the info.
Allowed values:
* “filePath" - if i npor t | nf o field is used and represents a file path
* “fileContent" - if i npor t | nf o field is used and represents a JSON text

File path to the Test info file.

Allowed values:

* “filePath" - if t est | nport | nf o field is used and represents a file path

® “fileContent" - if t est | npor t | nf o field is used and represents a JSON text
Allowed values:

® “true" - to import all created tests and linked them to a single Test Execution

issue

® " -link a Test Execution issue to every imported Test issue
Allowed values:

® “true" - to import all result files (if there are multiple) in parallel, in order to speed

up the import process
® " -toimport all result files (if there are multiple) sequentially

#

stage(' I nport results to Xray') {

steps {
step([$cl ass: ' XraylnportBuilder', endpointNane: '/junit', inmportFilePath: 'java-junit-calc
/target/surefire-reports/*.xm "', inportToSameExecution: 'true', projectKey: 'CALC, serverlnstance: 'ecc67055-
¢c359- 40ch- 8b8a- a44ch9f 6ca30'])
}

}

stage(' I nport results to Xray') {

steps {
step([$cl ass: ' XraylnportBuilder', endpointNane: '/xunit', inmportFilePath: '/reports/*.xm",
i mport ToSaneExecution: 'true', projectKey: 'CALC, serverlnstance: 'ecc67055-c359-40ch-8b8a-ad44ch9f6ca30’,
inportinParallel: "', fixVersion: 'v3.0', testEnvironnments: 'linux;firefox', testPlanKey: 'CALC 123",
test ExecKey: 'CALC-456', revision: 'commit eccc5855b', credentialld: '26dbaObe-45ca- 4f f d- b959- 13dbd241aa82'])
}

}

stage(' Inport results to Xray (nultipart)') {

steps {
step([$class: ' XraylnportBuilder', endpointNanme: '/nunit/nmultipart', inportFilePath: '/reports
/*.xm "', inportToSaneExecution: 'true', projectKey: 'CALC, serverlnstance: 'ecc67055-c359-40ch-8b8a-
ad44cb9f6ca30', inportinParallel: "true', inportinfo: '/info/nmy-test-exec-info.json', inputlnfoSwtcher:
"filePath'])
}

@ i mpor t I nf o must comply with the same format as the Jira issue create/update REST API format

stage('Inport results to Xray (nmultipart)') {

steps {
step([$cl ass: ' XraylnportBuilder', endpointNane: '/nunit/nultipart', inportFilePath: '/reports
/*.xm "', inportToSaneExecution: 'true', projectKey: 'CALC, serverlnstance: 'ecc67055-c359-40ch-8b8a-
a44ch9f 6ca30', inportinParallel: "true', inportinfo: '/info/ny-test-exec-info.json', inputlnfoSwtcher:
"filePath', inputTestinfoSwitcher: 'fileContent', testlnportinfo: '""'{
"fields": {
"project": {
"key": "CALC'
},

"summary": "Test Execution for java junit ${BU LD NUMBER}",
"issuetype": {

"id': o "9"
H
"custonfield_11807": [
" CALC- 1200"
]
}
Pl
}

@ i mport I nfoandtestlnportlnfo mustcomply with the same format as the Jira issue create/update REST API format

Step: XrayExportBuilder (export cucumber features from Jira to Jenkins)

Parameter Required? Type Description

https://docs.atlassian.com/software/jira/docs/api/REST/7.4.1/#api/2/issue-createIssue
https://developer.atlassian.com/cloud/jira/platform/rest/v3/api-group-issues/#api-rest-api-3-issue-post

serverlnsta Yes String The ID of the Jira instance configured in the Jenkins System
nce Configuration

i ssues Yes String Xray Tests/Test Plans/Test Sets/Test Execution issue keys,
separated by ';'.
(not required if fi | t er is used)

filter Yes String The Jira filter ID containing Xray Tests/Test Plans/Test Sets/Test
Execution issues
(not required if i ssues is used)

filePath No String The default value is "/features"

File path where the feature files will be downloaded

credentialld Yes, if the Jira instance was configured without credentials in String Credential ID from the Credentials plugin to be used to
System Configuration authenticate the Jira requests

stage(' Export feature files') {
step([$class: ' XrayExportBuilder', filter: '12345', serverlnstance: 'ecc67055-c359-40ch-8b8a-
ad44cb9f 6ca30'])

}

stage(' Export feature files') {
step([$cl ass: ' XrayExportBuilder', issues: 'CALC 123; CALC 234; CALC-345', serverlnstance: 'ecc67055-
€359-40cb- 8b8a- a44ch9f 6ca30', credential ld: '26dbaObe-45ca- 4f f d- b959- 13dbd2410a82"', filePath: 'ny/feature
/folder'])

}

stage(' Export feature files') {
step([$cl ass: ' XrayExportBuilder', issues: '${M_I| SSUE_KEYS}', filter: '${MY_FILTER ID}', filePath:
' ${MY_FI LE_PATH}', serverlnstance: 'ecc67055-c359-40ch-8b8a-ad44ch9f6ca30', credentialld: '26dbaObe-45ca-4ffd-
b959- 13dbd2410a82'])

}

Step: XraylmportFeatureBuilder (import cucumber features from Jenkins to Jira)

Parameter Required? Type Description

server | nst Yes String The ID of the Jira instance configured in the Jenkins System Configuration

ance

fol der Path Yes String This is the directory containing your feature files. All the files in this directory
and sub directories will be imported.

credenti al Yes, if the Jira instance was configured without String Credential ID from the Credentials plugin to be used to authenticate the Jira

Id credentials in System Configuration requests

proj ect Key Yes String This is the project where the Tests and Pre-Conditions will be created
/updated.

testinfo No String File path to the Test info file that will be used to create the new Test issues.

precondi ti No String File path to the Preconditions info file that will be used to create the new

ons Precondition issues.

| ast Modi fi No String By entering an integer n here, only files that where modified in the last n

ed hours will be imported.

Leave empty if you do not want to use this parameter.

stage(' Export feature files') {
step([$cl ass: ' Xrayl nport FeatureBuilder', folderPath: '/ny/feature/folder', |astMdified: '24",
projectKey: 'CALC, serverlnstance: 'ecc67055-c359-40ch-8b8a-a44ch9f6ca30'])
}

#
#
#
#
#

stage(' Export feature files') {
step([$cl ass: ' Xrayl nport FeatureBuilder', credentialld: 'f5522808-5cfa-4cd4-8972-8059f80ch3ed',
folderPath: '/my/feature/folder', preconditions: '/path/to/precond/ precondinfo.json', projectKey: 'CALC,
serverlnstance: 'ecc67055-c359-40ch-8b8a-a44ch9f6ca30', testinfo: '/path/to/testinfo/tesinfo.json'])
}

@ Learn more

For Pipeline specific documentation, you may want to give a look at:

® https://jenkins.io/doc/book/pipeline/
® https://jenkins.io/doc/book/pipeline/syntax/#declarative-pipeline
® https://github.com/jenkinsci/pipeline-plugin/blob/master/TUTORIAL.md

Cucumber Workflow suggestions

Cucumber ("standard" workflow)

This is a declarative example, for Cucumber tests using the "standard" workflow (see Testing in BDD with Gherkin based frameworks (e.g. Cucumber)).

Jenkinsfile example (declarative)

pi peline {
agent any
stages {
stage(' Export features from Xray')({
steps {
checkout ([$cl ass: 'G tSCM, branches: [[nanme: '*/master']], doGenerateSubnodul eConfigurations:
fal se, extensions: [], subnodul eCfg: [], userRenpteConfigs: [[credentialsld: 'a3285253-a867-4ea7-a843-
da349f d36490', url: 'ssh://git@ocal host/hone/git/repos/automati on-sanples.git']]1])
step([$cl ass: ' XrayExportBuilder', filePath: 'cucunber_xray_tests/features', filter: '11400',
serverlnstance: '552d0ch6- 6f 8d- 48ba- bbad- 50e94f 39b722'])
}
}

stage(' Test'){
st eps{
sh "cd cucunber_xray_tests && cucunber -x -f json -o data.json"

}
}
stage(' Inport results to Xray') {
steps {
step([$class: ' Xrayl nportBuilder', endpointNanme: '/cucunber', inportFilePath:
'cucunber _xray_tests/data.json', serverlnstance: '552d0ch6- 6f 8d-48ba- bbad-50e94f 39b722'])
}

}

Cucumber ("VCS/Git based" workflow)

This is a declarative example, for Cucumber tests using the "VCS/Git based" workflow (see Testing in BDD with Gherkin based frameworks (e.g.
Cucumber)).

https://docs.getxray.app/pages/viewpage.action?pageId=76997200
https://docs.getxray.app/pages/viewpage.action?pageId=31622264
https://docs.getxray.app/pages/viewpage.action?pageId=31622264
https://jenkins.io/doc/book/pipeline/
https://jenkins.io/doc/book/pipeline/syntax/#declarative-pipeline
https://github.com/jenkinsci/pipeline-plugin/blob/master/TUTORIAL.md

Jenkinsfile example (declarative)

pi peline {
agent any
stages {
stage(' Synch (update) recent tests to Xray')({
steps {
checkout ([$cl ass: 'G tSCM, branches: [[name: '*/master']], doGenerateSubnodul eConfigurations:
fal se, extensions: [], subnoduleCfg: [], userRenpteConfigs: [[credentialsld: 'a3285253-a867-4ea7-a843-
da349f d36490', url: 'ssh://git@ocal host/hone/git/repos/automation-sanples.git']]])
step([$class: ' Xrayl nport FeatureBuil der', folderPath: 'cucunber_xray_tests/features',
| ast Modi fied: '10', projectKey: 'CALC, serverlnstance: '552d0ch6- 6f 8d-48ba- bbad-50e94f39b722'])
}
}

stage(' Export features from Xray'){
steps {
checkout ([$cl ass: 'G tSCM, branches: [[name: '*/master']], doGenerateSubnodul eConfigurations:
fal se, extensions: [], subnodul eCfg: [], userRenpoteConfigs: [[credential sld: 'a3285253-a867-4ea7-a843-
da349fd36490', url: 'ssh://git@ocal host/hone/git/repos/automation-sanples.git']]])
sh "rm-rf cucunber_xray_tests/features”
step([$cl ass: ' XrayExportBuilder', filePath: 'cucunber_xray_tests/features', filter: '11400',
serverlnstance: '552d0ch6- 6f 8d- 48ba- bbad- 50e94f 39b722'])
}
}

stage(' Test'){
st eps{
sh "cd cucunber_xray_tests && cucunber -x -f json -o data.json"

}
}
stage(' Inport results to Xray') {
steps {
step([$class: ' Xrayl nportBuilder', endpointNanme: '/cucunber', inportFilePath:
'cucunber _xray_tests/data.json', serverlnstance: '552d0cb6- 6f 8d- 48ba- bbad- 50e94f 39b722'])
}

}

Using parameters

You can ask for human input in your pipeline builds by passing parameters

Parameters usage

pi pel i ne{
agent any
paraneters {
string(defaul tValue: "NTP", description: '', nane: 'projectKey')
string(defaul tValue: "Android", description: '', name: 'env')
}
stages {
stage ('Inmport Results') {
steps {
step([$class: ' Xrayl nportBuil der',
endpoi nt Nanme: '/junit',
inportFilePath: 'java-junit-calc/target/surefire-reports/*.xm",
i mport ToSaneExecution: 'true',
proj ect Key: paramns. proj ect Key,
revision: parans. projectKey + env.BU LD NUMBER,
serverl nstance: '552d0cbh6- 6f 8d- 48ba- bbad- 50e94f 39b722' ,
test Envi ronnents: parans. env])
}
}
}
}
Recommendations

You can automatically generate your step scripts using the Jenkins Snippet Generator.

® Jenkins

Jenkins My Pipeline Demo

Back to Dashboard

st Pipeline My Pipeline Demo
.~ Changes
£2) Build Now
(& Eliminar Pipeline p—
& Recent Changes
M. Configurar & ‘_"’
Full Stage View
) Pipeling Syntay ——<efe—— Stage View
Historico de builds tendéncia = Declarative: Export
Checkout FiGmbar
find 5CM
. e 4s 673ms
@ 2 54 -

@ Jenkins

@ Xavier Femandes | sair

Jenkins » My Pipeline Demo Pipeline Syntax
Back Overview
2% Snippet Generator g This Snippet Generator will help you learn the Pipeline Script code which can be used to define various steps. Pick a step you are interested in from the list, configure it click Generate Pipeline Script. and you will see a Pipeline Script statement that would call
@ i Rirics the step with that configuration. You may Copy and paste the whole statement into your script, or pick up just the options you care about. (Most parameters are optional and can be omitted in your SCript, leaving them at default values.)
Steps
© Global Varizbles Reference

Sample Step | step: General Build Step

—

Online Documentation

®

Intelli) IDEA GDSL

% BUIldSI&D xray: Cucumber Features Export Task

JIRAINSIENCE | yray instance

Isstes 11 P
Fiter P
FilePaln | \eatures L]

Click here for more details

Generate Pipeline Script

step([Sclass: XrayExportBuilder, filePath: "features, issues: 'IF-1', serverinstance: ‘2fic3ade-9e2r-4279-abcd-e930 Tied7bed])

Global Variables

There are many features of the Pipeline that are not steps. These are often exposed via global variables, which are not supported by the snippet generator. See the Global Variables Reference for details

This is the simplest way to generate your step script, and we strongly recommend the use of this snippet due to the complexity of some task related
parameters.

Jira instances configuration via Groovy script (Jenkins Script Console)

If you use a containerised version of Jenkins, or simply want to avoid creating the Jira configurations manually (using the Jenkins Ul), you can use the
following script in the Jenkins Script Console.

To use the script below, you just need to modify the contents of the instances and deleteOldInstances variables.

Create new Jira instances in Xray global configuration

i mport jenkins. nodel . Jenki ns

i mport net.sf.json. JSONArray

i mport net.sf.json. JSONObj ect

i mport com xpandit. pl ugi ns. xr ayj enki ns. nodel . Host i ngType

i mport com xpandi t. pl ugi ns. xrayj enki ns. nodel . Xr ayl nst ance

i mport com xpandi t. pl ugi ns. xr ayj enki ns. nodel . Server Confi guration

/1 true, if you want the old Jira instances renoved, false otherw se.

bool ean del eted dl nstances = fal se

/* Represents the Jira instances to be added to the d obal Jenkins configuration.

* - nane: the name of the Jira instance to be displayed to the users.

* - hostingType: nmust be one of two values. 'SERVER for Server or Data Center instances OR'CLOUD for cloud
i nstances.

* - url: [ONLY FOR SERVER | NSTANCES] the base URL/IP of the Jira server address.

* - credentialld: [OPTIONAL] the credential ID fromthe 'Credentials' plugin that will be used to authenticate
the jira REST APl requests.

*/
JSONArray i nstances
[

=1

nanme: 'ny Jira server',
hosti ngType: ' SERVER ,

url: "http://exanple.com,
credential I d: " XXXXXXXX=XXXX-XXXX~ XXXX- XXXXXXXXXXXX"' [/ Credential ID fromthe 'Credentials’
pl ugi n.
1
[
nane: 'ny Jira cloud',
hosti ngType: ' CLOUD ,
credential I d: " XXXXXXXX-XXXX-XXXX- XXXX- XXXXXXXXXXXX"' // Credential ID fromthe 'Credentials’
pl ugi n.

]
] as JSONArray

/Il ~~~ Saves the new Jira instances into the Jenkins gl obal
Server Configuration config = ServerConfiguration. get()
Li st <Xrayl nst ance> xrayl nstances = new ArrayLi st <Xrayl nstance>()

configuration ~~~

i nstances. each {instance ->

String nane = instance.optString('nane', '')

String hostingTypeString = instance.optString('hostingType', '')

String url = instance.optString(‘url', '")

String credentialld = instance.optString('credentialld , null)

Hosti ngType hostingType = hostingTypeString == 'CLOUD ? HostingType. CLOUD : Hosti ngType. SERVER

xrayl nst ances. add(new Xrayl nstance(null, nane, hostingType, url, credentialld))

}

Li st <Xrayl nst ance> ol dXrayl nst ances confi g. get Server | nstances()
if (!deleteddlnstances & ol dXraylnstances != null) {
xrayl nstances. addAl | (ol dXrayl nst ances)

}

config. set Server| nstances(xrayl nst ances)
config.save()

println(' Xray Jira Instances created

9D

Troubleshooting

The build process is failing with status code 403

When you check the log, it has the following:

) Console Output

Started by user admin
Building in workspace C:\Users\DMDU\.jenkins‘\workspace\Xray Automated Tests

Starting export task...

FREEF R R R R R R R
$##4 Xray for JIRR is exporting the feature files $####
PR R R R R
PROJ-TE; PROJ-T8
Task failed
. ERRCR: Unable to confirm Result of the download..... Download Failed! Status:403 Response:

By default, when you successively try to log into Jira with the wrong credentials, the Jira instance will prompt you to provide a CAPTCHA the next time you
try to log in. It is not possible to provide this information via the build process, so it will fail with status code 403 Forbidden.

You will need to log into Jira via the browser and provide the CAPTCHA.

WJIRA Dashboards - DbConsole) a @ @- Logh

Welcome to JIRA

Sorry, your usemame and password are incorrect - please try again.

Username | CI_user

Password

Remember my login on this computer

N

Not amember? To request an account, please contact your
JIRA administrators.

Login | Cantaccess your account?

If you are a Jira administrator, you can go to Jira administration > User Management and reset the failed login.

Cl_User Cl_User Count: 9 Jira-software-users JIRA Software JIRA Internal Directory Edit
user@example.com Last: Today 1:55 PM

CAPTCHA required at next login
Last failed login: Today 1:57 PM
Current failed logins: 7

Total failed logins: 21

* Reset failed login count

The Jira xxx configuration of this task was not found

If you obtain this error, probably you have migrated from an old version of this plugin. You need to open each project/job configuration and save it.

TESTS

Running com.xpand.java.CalcTest
Tests run: 4, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.046 sec - in com.xpand.java.CalcTest

Results :

Tests run: 4, Failures: 0, Errors: 0, Skipped: 0

[INFO]
[INFO] BUILD SUCCESS
[INFO]
[INFO] Total time: 2.900 s

[INFO] Finished at: 2020-05-25T19:39:07+01:00
[INFO] Final Memory: 15M/164M

[INFO]
Recording test results

Starting XRAY: Results Import Task...

Xray is importing the feature files

XRAY_TESTS:
XRAY_IS_REQUEST_SUCCESSFUL: false

XRAY_TEST_EXECS: ~~—
XRAY_RAW_RESPONSE: The Jira server configuration of this task was not found.

XRAY_ISSUES_MODIFIED:

ERROR: Step ‘Xray: Results Import Task’ failed: The Jira server configuration of this task was not found.
ERROR: Unable to notify JIRA: [403] 403

ERROR: Unable to notify sergiofreire: [402] Payment Required

Finished: FAILURE

	Integration with Jenkins

