
Testing using Cypress and Cucumber in JavaScript

Overview
Requirements
Description

Using Jira and Xray as master
Using Git or other VCS as master

FAQ and Recommendations
References

Overview
In this tutorial, we will create some UI tests as Cucumber Scenario(s)/Scenario Outline(s) and use to implement the tests in JavaScript.Cypress

Requirements
Node.js
cucumber-json-formatter
npm packages

cypress
 @badeball/cypress-cucumber-preprocessor

Description
For the purpose of this tutorial, we'll use a (source-code) containing just a few pages to support login/logout kind of features; we aim dummy website here
to test precisely those features.

We need to configure Cypress to use the new ,@badeball/cypress-cucumber-preprocessor which provides the ability of understanding .feature
files and also of producing Cucumber JSON reports.

This is done in Cypress' main configuration file, where you can also define the base URL of the website under test, the regex of the files that contain the
test scenarios (i.e. <...>.feature files). Other options may be defined (e.g for bypassing chromeWebSecurity, additional reporters, the ability to upload
results to Cypress infrastructure in the cloud, etc).

Source-code for this tutorial

Code is available in ; the repo contains some auxiliary scripts.GiHub

https://www.cypress.io/
https://robotwebdemo.herokuapp.com/
https://github.com/bitcoder/WebDemo
https://www.npmjs.com/package/@badeball/cypress-cucumber-preprocessor
https://github.com/Xray-App/tutorial-js-cypress-cucumber

/cypress.config.js

const { defineConfig } = require('cypress')
const createBundler = require("@bahmutov/cypress-esbuild-preprocessor");
const createEsbuildPlugin = require('@badeball/cypress-cucumber-preprocessor/esbuild').createEsbuildPlugin;
const addCucumberPreprocessorPlugin = require('@badeball/cypress-cucumber-preprocessor').
addCucumberPreprocessorPlugin;

async function setupNodeEvents(on, config) {
 await addCucumberPreprocessorPlugin(on, config);

 on(
 "file:preprocessor",
 createBundler({
 plugins: [createEsbuildPlugin(config)],
 })

);

 // Make sure to return the config object as it might have been modified by the plugin.
 return config;
}

module.exports = defineConfig({
 e2e: {
 baseUrl: "https://robotwebdemo.herokuapp.com/",
 specPattern: "**/*.feature",
 excludeSpecPattern: [
 "*.js",
 "*.md"
],
 chromeWebSecurity: false,
 projectId: "bfi83g",
 supportFile: false,
 setupNodeEvents
 }

})

The configuration of @badeball/cypress-cucumber-preprocessor

can either be done on a JSON file or within ..cypress-cucumber-preprocessorrc.json package.json

Next, you may find an example of the contents of package.json.

package.json

{
 "name": "tutorial-js-cypress-cucumber",
 "version": "1.0.0",
 "description": "An example for Cypress and Cucumber usage using Robot login demo website",
 "main": "index.js",
 "scripts": {
 "cypress:open:local": "CYPRESS_ENV=localhost npm run cypress:open",
 "cypress:open:prod": "CYPRESS_ENV=production npm run cypress:open",
 "cypress:open": "npx cypress open",
 "test:local": "CYPRESS_ENV=localhost npm run test --spec 'cypress/integration/**/*.feature",
 "test:prod": "CYPRESS_ENV=production npm run test",
 "test": "npx cypress run --spec 'features/**/*.feature'",
 "test:debug:local": "CYPRESS_ENV=localhost npm run test:debug",
 "test:debug:prod": "CYPRESS_ENV=production npm run test:debug",
 "test:debug": "npx cypress run --headed --browser chrome --env TAGS='@e2e-test' --spec 'cypress/integration
/**/*.feature'"
 },
 "author": "Xblend",
 "license": "BSD-3-Clause",
 "dependencies": {
 "axios": "^0.18.0",
 "fs-extra": "^7.0.1",
 "glob": "^7.1.7"
 },
 "devDependencies": {
 "@badeball/cypress-cucumber-preprocessor": "^13.0.2",
 "@bahmutov/cypress-esbuild-preprocessor": "^2.1.3",
 "@cypress/webpack-preprocessor": "latest",
 "cypress": "^10.8.0",
 "esbuild": "^0.14.45",
 "eslint": "^5.13.0",
 "eslint-config-airbnb-base": "^12.1.0",
 "eslint-config-prettier": "^2.9.0",
 "eslint-plugin-cypress": "^2.11.3",
 "eslint-plugin-import": "^2.23.4",
 "eslint-plugin-prettier": "^2.6.0",
 "husky": "^1.3.1",
 "lint-staged": "^8.1.3"
 },
 "cypress-cucumber-preprocessor": {
 "json": {
 "enabled": true,
 "formatter": "/usr/local/bin/cucumber-json-formatter",
 "output": "cucumber-report.json"
 }
 },
 "husky": {
 "hooks": {
 "pre-commit": "lint-staged"
 }
 },
 "lint-staged": {
 "*.js": [
 "eslint",
 "git add"
]
 }
}

We need to have the tool, which can be downloaded from the . Make sure you pick the correct cucumber-json-formatter respective GitHub repository
binary for your environment.

This tool is necessary to convert the Cucumber messages protobuf (*.ndjson file) report generated by . @badeball/cypress-cucumber-preprocessor

https://github.com/cucumber/json-formatter/releases

1.

2.
3.
4.
5.
6.

example of Bash script to download hte cucumber-json-formatter tool for Linux

wget https://github.com/cucumber/json-formatter/releases/download/v19.0.0/cucumber-json-formatter-linux-amd64 -
O /usr/local/bin/cucumber-json-formatter
chmod +x /usr/local/bin/cucumber-json-formatter

In case you need to interact with Xray REST API at low-level using scripts (e.g. Bash/shell scripts), this tutorial uses an auxiliary file with the credentials
(more info in).Global Settings: API Keys

Example of cloud_auth.json used in this tutorial

{ "client_id": "215FFD69FE4644728C72180000000000","client_secret":
"1c00f8f22f56a8684d7c18cd6147ce2787d95e4da9f3bfb0af8f020000000000" }

Before moving into the actual implementation, we need to decide is which workflow we'll use: do we want to use Xray/Jira as the master for writing the
declarative specification (i.e. the Gherkin based Scenarios), do we want to manage those outside using some editor and store them in Git, for example?or

Using Jira and Xray as master

This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).

The overall flow would be something like this:

create Scenario/Scenario Outline as a Test in Jira; usually, it would be linked to an existing "requirement"/Story (i.e. created from the respective
issue screen)
implement the code related to Gherkin statements/steps and store it in Git, for example
generate .feature files based on the specification made in Jira
checkout the code from Git
run the tests in the CI
import the results back to Jira

Usually, you would start by having a Story, or similar (e.g. "requirement"), to describe the behavior of a certain feature and use that to drive your testing.

If you have it, then you can just use the "Create Test" on that issue to create the Scenario/Scenario Outline and have it automatically linked back to the
Story/"requirement".

Otherwise, you can create the Test using the standard (issue) Create action from Jira's top menu.

Learn more

Please see for an overview of the possible workflows.Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

The place that you'll use to edit the Cucumber Scenarios will affect your workflow. There are teams that prefer to edit Cucumber Scenarios in
Jira using Xray, while there others that prefer to edit them by writing the .feature files by hand using some IDE.

https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+API+Keys
https://docs.getxray.app/pages/viewpage.action?pageId=31622264

In this case, we'll create a Cucumber Scenario.

We need to create the Test issue first and fill out the Gherkin statements later on in the Test issue screen.

After the Test is created it will impact the coverage of related "requirement", if any.

The coverage and the test results can be tracked in the "requirement" side (e.g. user story). In this case, you may see that coverage changed from being
UNCOVERED to NOTRUN (i.e. covered and with at least one test not run).

Additional tests could be created, eventually linked to the same Story or linked to another one (e.g. logout).

The related statement's code is managed outside of Jira and stored in Git, for example.

In Cypress, tests related code is mainly stored under directory, which itself contains several other directories. In this case, we've cypress/integration
organized the assets as follows:

cypress/support/step_definitions: step implementation files, in JavaScript.

cypress/support/step_definitions/login.js

import { Given, When, Then } from "@badeball/cypress-cucumber-preprocessor";
import LoginPage from '../../pages/login-page';
import LoginResultsPage from '../../pages/login-results-page';

Given(/^browser is opened to login page$/, () => {
 LoginPage.visit();
});

When('user {string} logs in with password {string}', (username, password) => {
 LoginPage.enter_username(username);
 LoginPage.enter_password(password);
 LoginPage.pressLogin();
});

Then(/^welcome page should be open$/, () => {
 LoginResultsPage.expect().toBeSuccessful();
 });

Then(/^error page should be open$/, () => {
 LoginResultsPage.expect().toBeUnsuccessful();
 });

cypress/support/step_definitions/logout.js

import { Given, When, Then } from "@badeball/cypress-cucumber-preprocessor";

import WelcomePage from '../../pages/welcome-page';
import LogoutResultsPage from '../../pages/logout-results-page';

Given(/^user is on the welcome page$/, () => {
 WelcomePage.visit();
});

When('user chooses to logout', () => {
 WelcomePage.pressLogout();
});

Then(/^login page should be open$/, () => {
 LogoutResultsPage.expect().toBeSuccessful();
 });

cypress/integration/pages: abstraction of different pages, somehow based on the page-objects model

cypress/integration/pages/login.js

import LoginResultsPage from './login-results-page';

const USERNAME_FIELD = 'input[id=username_field]';
const PASSWORD_FIELD = 'input[id=password_field]';
const LOGIN_BUTTON = 'input[type=submit]';
const LOGIN_TEXT = 'LOGIN';

class LoginPage {
 static visit() {
 cy.visit('/');
 }

 static enter_username(username) {
 cy.get(USERNAME_FIELD)
 .type(username);
 }

 static enter_password(password) {
 cy.get(PASSWORD_FIELD)
 .type(password);
 }

 static pressLogin() {
 cy.get(LOGIN_BUTTON).contains(LOGIN_TEXT)
 .click();
 return new LoginResultsPage();
 }

}

export default LoginPage;

cypress/integration/pages/login-results-page.js

const RESULT_HEADER = 'h1';

class LoginResultsPage {
 static expect() {
 return {
 toBeSuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Welcome Page')
 },

 toBeUnsuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Error Page')
 },
 };
 }
 }

export default LoginResultsPage;

cypress/integration/pages/logout-results-page.js

const RESULT_HEADER = 'h1';

class LogoutResultsPage {
 static expect() {
 return {
 toBeSuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Login Page')
 },
 };
 }
 }

export default LogoutResultsPage;

cypress/integration/pages/welcome-page.js

import LoginPage from './login-page';

const LOGOUT_LINK = 'a';
const LOGOUT_TEXT = 'logout';

class WelcomePage {
 static visit() {
 cy.visit('/welcome.html');
 }

 static pressLogout() {
 cy.get(LOGOUT_LINK).contains(LOGOUT_TEXT)
 .click();
 return new LoginPage();
 }

}

export default WelcomePage;

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the UI action from within the TestExport to Cucumber
/Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

use the UI

use the REST API (more info)here

example of a shell script to export/generate .features from Xray

#!/bin/bash

token=$(curl -H "Content-Type: application/json" -X POST --data @"cloud_auth.json" https://xray.
cloud.getxray.app/api/v2/authenticate| tr -d '"')
curl -H "Content-Type: application/json" -X GET -H "Authorization: Bearer $token" "https://xray.
cloud.getxray.app/api/v2/export/cucumber?keys=CALC-632;CALC-633" -o features.zip

rm -rf features/*.feature
unzip -o features.zip -d features

use one of the available CI/CD plugins (e.g. see an example of)Integration with Jenkins

We will export the features to a new directory named on the root folder of your Cypress project (we'll need to tell Cypress to use this folder).features/

After being exported, the created .feature(s) will contain references to the Test issue key, eventually prefixed (e.g. "TEST_") depending on an Xray global
, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in .setting Generate Cucumber Features

https://docs.getxray.app/display/XRAYCLOUD/Integration+with+Jenkins
https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+Cucumber
https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+Cucumber
https://docs.getxray.app/display/XRAYCLOUD/Generate+Cucumber+Features

features/2_CALC-632.feature

@REQ_CALC-632
Feature: As a user, I can login the application
 #As a user, I can login the application

 #Tests As a user, I can logout the application
 @TEST_CALC-634
 Scenario: Valid Login
 Given browser is opened to login page
 When user "demo" logs in with password "mode"
 Then welcome page should be open
 #Tests As a user, I can logout the application
 @TEST_CALC-635
 Scenario: Invalid Login
 Given browser is opened to login page
 When user "dummy" logs in with password "password"
 Then error page should be open
 @TEST_CALC-636
 Scenario Outline: Login With Invalid Credentials Should Fail
 Given browser is opened to login page
 When user "<username>" logs in with password "<password>"
 Then error page should be open

 Examples:
 | username | password |
 | invalid | mode |
 | demo | invalid |
 | invalid | invalid |
 | demo | mode |

features/1_CALC-633.feature

@REQ_CALC-633
Feature: As a user, I can logout the application
 #As a user, I can logout the application

 @TEST_CALC-637
 Scenario: Valid Logout
 Given user is on the welcome page
 When user chooses to logout
 Then login page should be open

To run the tests and produce Cucumber JSON reports(s), we can either use or command directly.npm cypress

npm run test

or instead...

node_modules/cypress/bin/cypress run --spec 'features/**/*.feature'

This will produce one Cucumber JSON report.

After running the tests, results can be imported to Xray via the REST API, or the action within the Test Execution, or by using Import Execution Results
one of the available CI/CD plugins (e.g. see an example of).Integration with Jenkins

https://docs.getxray.app/display/XRAYCLOUD/Integration+with+Jenkins

import_results_cloud.sh

#!/bin/bash

BASE_URL=https://xray.cloud.getxray.app
token=$(curl -H "Content-Type: application/json" -X POST --data @"cloud_auth.json" "$BASE_URL/api/v2
/authenticate"| tr -d '"')
curl -H "Content-Type: application/json" -X POST -H "Authorization: Bearer $token" --data @"cucumber-report.
json" "$BASE_URL/api/v2/import/execution/cucumber"

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

1.
2.

Which Cucumber endpoint/"format" to use?

To import results, you can use two different endpoints/"formats" (endpoints described in):Import Execution Results - REST

the "standard cucumber" endpoint
the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. is simpler but more restrictive: you cannot specify values for custom fields /import/execution/cucumber)
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan), if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

A given example can be expanded to see all Gherkin statements and, if available, it is possible to see also the attached screenshot(s).

Note: in this case, the bug was on the Scenario Outline example which was using a valid username/password combination.

Results are reflected on the covered item (e.g. Story). On its issue screen, coverage now shows that the item is OK based on the latest testing results, that
can also be tracked within the Test Coverage panel bellow.

Using Git or other VCS as master

1.
2.
3.
4.
5.
6.
7.
8.

You can edit your .feature files using your IDE outside of Jira (eventually storing them in your VCS using Git, for example) alongside with remaining test
code.

In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility of them and report results against them.

The overall flow would be something like this:

look at the existing "requirement"/Story issue keys to guide your testing; keep their issue keys
specify Cucumber/Gherkin .feature files in your IDE supporting Cypress and store it in Git, for example
implement the code related to Gherkin statements/steps and store it in Git, for example
import/synchronize the .feature files to Xray to provision or update corresponding Test entities
export/generate .feature files from Jira, so that they contain references to Tests and requirements in Jira
checkout the Cypress related code from Git
run the tests in the CI
import the results back to Jira

Usually, you would start by having a Story, or similar (e.g. "requirement"), to describe the behavior of a certain feature and use that to drive your testing.

Having those to guide testing, we could then move to Cypress to describe and implement the Cucumber test scenarios.

In Cypress, tests related code is mainly stored inside the directory, which itself contains several other directories. In this case, cypress/integration
we've organized the assets as follows:

cypress/support/step_definitions: step implementation files, in JavaScript.

cypress/support/step_definitions/login.js

import { Given, When, Then } from "@badeball/cypress-cucumber-preprocessor";
import LoginPage from '../../pages/login-page';
import LoginResultsPage from '../../pages/login-results-page';

Given(/^browser is opened to login page$/, () => {
 LoginPage.visit();
});

When('user {string} logs in with password {string}', (username, password) => {
 LoginPage.enter_username(username);
 LoginPage.enter_password(password);
 LoginPage.pressLogin();
});

Then(/^welcome page should be open$/, () => {
 LoginResultsPage.expect().toBeSuccessful();
 });

Then(/^error page should be open$/, () => {
 LoginResultsPage.expect().toBeUnsuccessful();
 });

cypress/support/step_definitions/logout.js

import { Given, When, Then } from "@badeball/cypress-cucumber-preprocessor";

import WelcomePage from '../../pages/welcome-page';
import LogoutResultsPage from '../../pages/logout-results-page';

Given(/^user is on the welcome page$/, () => {
 WelcomePage.visit();
});

When('user chooses to logout', () => {
 WelcomePage.pressLogout();
});

Then(/^login page should be open$/, () => {
 LogoutResultsPage.expect().toBeSuccessful();
 });

cypress/integration/pages: abstraction of different pages, somehow based on the page-objects model

cypress/integration/pages/login.js

import LoginResultsPage from './login-results-page';

const USERNAME_FIELD = 'input[id=username_field]';
const PASSWORD_FIELD = 'input[id=password_field]';
const LOGIN_BUTTON = 'input[type=submit]';
const LOGIN_TEXT = 'LOGIN';

class LoginPage {
 static visit() {
 cy.visit('/');
 }

 static enter_username(username) {
 cy.get(USERNAME_FIELD)
 .type(username);
 }

 static enter_password(password) {
 cy.get(PASSWORD_FIELD)
 .type(password);
 }

 static pressLogin() {
 cy.get(LOGIN_BUTTON).contains(LOGIN_TEXT)
 .click();
 return new LoginResultsPage();
 }

}

export default LoginPage;

cypress/integration/pages/login-results-page.js

const RESULT_HEADER = 'h1';

class LoginResultsPage {
 static expect() {
 return {
 toBeSuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Welcome Page')
 },

 toBeUnsuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Error Page')
 },
 };
 }
 }

export default LoginResultsPage;

cypress/integration/pages/logout-results-page.js

const RESULT_HEADER = 'h1';

class LogoutResultsPage {
 static expect() {
 return {
 toBeSuccessful: () => {
 cy.get(RESULT_HEADER).should('have.text', 'Login Page')
 },
 };
 }
 }

export default LogoutResultsPage;

cypress/integration/pages/welcome-page.js

import LoginPage from './login-page';

const LOGOUT_LINK = 'a';
const LOGOUT_TEXT = 'logout';

class WelcomePage {
 static visit() {
 cy.visit('/welcome.html');
 }

 static pressLogout() {
 cy.get(LOGOUT_LINK).contains(LOGOUT_TEXT)
 .click();
 return new LoginPage();
 }

}

export default WelcomePage;

cypress/integration/login: Cucumber .feature files, containing the tests as Gherkin Scenario(s)/Scenario Outline(s). Please note that
each "Feature: <..>" section should be tagged with the issue key of the corresponding "requirement"/story in Jira. You may need to add a prefix (e.
g. "REQ_") before the issue key, depending on an .Xray global setting

https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+Cucumber

cypress/integration/login/login.feature

@REQ_CALC-6232
Feature: As a user, I can login the applicaiton

Scenario: Valid Login
 Given browser is opened to login page
 When user "demo" logs in with password "mode"
 Then welcome page should be open

Scenario: Invalid Login
 Given browser is opened to login page
 When user "dummy" logs in with password "password"
 Then error page should be open

Scenario Outline: Login With Invalid Credentials Should Fail
 Given browser is opened to login page
 When user "<username>" logs in with password "<password>"
 Then error page should be open

 Examples:
 | username | password |
 | invalid | mode |
 | demo | invalid |
 | invalid | invalid |
 | demo | mode |

cypress/integration/login/logout.feature

@REQ_CALC-633
Feature: As a user, I can logout the application

Scenario: Valid Logout
 Given user is on the welcome page
 When user chooses to logout
 Then login page should be open

Before running the tests in the CI environment, you need to import your .feature files to Xray/Jira; you can invoke the REST API directly or use one of the
available plugins/tutorials for CI tools.

example of a shell script to import/synchronize Scenario(s)/Background(s) from .features to Jira and Xray

#!/bin/bash

BASE_URL=https://xray.cloud.getxray.app
PROJECT=CALC

zip -r features.zip cypress/integration/ -i *.feature

token=$(curl -H "Content-Type: application/json" -X POST --data @"cloud_auth.json" "$BASE_URL/api/v2
/authenticate"| tr -d '"')
curl -H "Content-Type: multipart/form-data" -H "Authorization: Bearer $token" -F "file=@features.zip"
"$BASE_URL/api/v2/import/feature?projectKey=$PROJECT"

Please note

Each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again then Xray can
update the existent Test and don't create any duplicated tests.

Afterward, you can export those features out of Jira based on some criteria, so they are properly tagged with corresponding issue keys; this is important
because results need to contain these references.

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the UI action from within the TestExport to Cucumber
/Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

use the UI

use the REST API (more info)here

example of a shell script to export/generate .features from Xray

#!/bin/bash

BASE_URL=https://xray.cloud.getxray.app
token=$(curl -H "Content-Type: application/json" -X POST --data @"cloud_auth.json" $BASE_URL/api/v2
/authenticate| tr -d '"')
curl -H "Content-Type: application/json" -X GET -H "Authorization: Bearer $token" "$BASE_URL/api/v2
/export/cucumber?keys=CALC-632;CALC-633" -o features.zip

rm -rf features/*.feature
unzip -o features.zip -d features

use one of the available CI/CD plugins (e.g. see an example of)Integration with Jenkins

For CI only purpose, we will export the features to a new temporary directory named on the root folder of your Cypress project (we'll need to features/
tell Cypress to use this folder). Please note that while implementing the tests, .feature files should be edited inside the cypress/integration/login folder, in
this case;

After being exported, the created .feature(s) will contain references to the Test issue keys, eventually prefixed (e.g. "TEST_") depending on an Xray global
, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in .setting Generate Cucumber Features

https://docs.getxray.app/display/XRAYCLOUD/Integration+with+Jenkins
https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+Cucumber
https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+Cucumber
https://docs.getxray.app/display/XRAYCLOUD/Generate+Cucumber+Features

features/2_CALC-632.feature

@REQ_CALC-632
Feature: As a user, I can login the application
 #As a user, I can login the application

 #Tests As a user, I can logout the application
 @TEST_CALC-634
 Scenario: Valid Login
 Given browser is opened to login page
 When user "demo" logs in with password "mode"
 Then welcome page should be open

 #Tests As a user, I can logout the application
 @TEST_CALC-635
 Scenario: Invalid Login
 Given browser is opened to login page
 When user "dummy" logs in with password "password"
 Then error page should be open

 @TEST_CALC-636
 Scenario Outline: Login With Invalid Credentials Should Fail
 Given browser is opened to login page
 When user "<username>" logs in with password "<password>"
 Then error page should be open

 Examples:
 | username | password |
 | invalid | mode |
 | demo | invalid |
 | invalid | invalid |
 | demo | mode |

To run the tests and produce Cucumber JSON reports(s), we can either use or command directly.npm cypress

npm run test

or instead...

node_modules/cypress/bin/cypress run --spec 'features/**/*.feature'

This will produce one Cucumber JSON report.

After running the tests, results can be imported to Xray via the REST API, or the action within the Test Execution, or by using Import Execution Results
one of the available CI/CD plugins (e.g. see an example of).Integration with Jenkins

Example of shell script to import results (e.g. import_results_cloud.sh)

#!/bin/bash

BASE_URL=https://xray.cloud.getxray.app
token=$(curl -H "Content-Type: application/json" -X POST --data @"cloud_auth.json" "$BASE_URL/api/v2
/authenticate"| tr -d '"')
curl -H "Content-Type: application/json" -X POST -H "Authorization: Bearer $token" --data @"cucumber-report.
json" "$BASE_URL/api/v2/import/execution/cucumber"

https://docs.getxray.app/display/XRAYCLOUD/Integration+with+Jenkins

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

1.
2.

Which Cucumber endpoint/"format" to use?

To import results, you can use two different endpoints/"formats" (endpoints described in):Import Execution Results - REST

the "standard cucumber" endpoint
the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. is simpler but more restrictive: you cannot specify values for custom fields /import/execution/cucumber)
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan), if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST

A given example can be expanded to see all Gherkin statements and, if available, it is possible to see also the attached screenshot(s).

Note: in this case, the bug was on the Scenario Outline example which was using a valid username/password combination.

Results are reflected on the covered item (e.g. Story). On its issue screen, coverage now shows that the item is OK based on the latest testing results, that
can also be tracked within the Test Coverage panel bellow.

If we change the specification (i.e. the Gherkin scenarios), we need to import the .feature(s) once again.

Therefore, in the CI we always need to start by importing the .feature file(s) to keep Jira/Xray on synch.

FAQ and Recommendations
Please see .this page

References
Cypress
Cypress documentation
@badeball/cypress-cucumber-preprocessor

https://docs.getxray.app/pages/viewpage.action?pageId=31622264#TestinginBDDwithGherkinbasedframeworks(e.g.Cucumber)-Commonproblems
https://www.cypress.io/
https://docs.cypress.io/
https://github.com/badeball/cypress-cucumber-preprocessor

	Testing using Cypress and Cucumber in JavaScript

