Testing using Cypress and Cucumber in JavaScript

® Overview
® Requirements
® Description
© Using Jira and Xray as master
© Using Git or other VCS as master
® FAQ and Recommendations
® References

Overview

In this tutorial, we will create some Ul tests as Cucumber Scenario(s)/Scenario Outline(s) and use Cypress to implement the tests in JavaScript.

Source-code for this tutorial

Code is available in GiHub; the repo contains some auxiliary scripts.

Requirements

® Node.js
® cucumber-json-formatter
® npm packages
© cypress
O @adebal | / cypress-cucumber-preprocessor

Description

For the purpose of this tutorial, we'll use a dummy website (source-code here) containing just a few pages to support login/logout kind of features; we aim
to test precisely those features.

Login Page

Please input your user name and password and click the login
button.

User Name: | |
Password: | |

We need to configure Cypress to use the new @adebal | / cypress-cucunber - prepr ocessor, which provides the ability of understanding .feature
files and also of producing Cucumber JSON reports.

This is done in Cypress' main configuration file, where you can also define the base URL of the website under test, the regex of the files that contain the
test scenarios (i.e. <...>.feature files). Other options may be defined (e.g for bypassing chromeWebSecurity, additional reporters, the ability to upload
results to Cypress infrastructure in the cloud, etc).

https://www.cypress.io/
https://robotwebdemo.herokuapp.com/
https://github.com/bitcoder/WebDemo
https://www.npmjs.com/package/@badeball/cypress-cucumber-preprocessor
https://github.com/Xray-App/tutorial-js-cypress-cucumber

Icypress.config.js

const { defineConfig } = require('cypress')

const createBundler = require("@ahnutov/cypress-esbuil d-preprocessor");

const createEsbuil dPlugin = require(' @adebal | /cypress-cucunber-preprocessor/esbuild').createEsbuil dPl ugin;
const addCucunber Preprocessor Pl ugi n = require(' @adebal | / cypress-cucunber - preprocessor').

addCucunber Pr eprocessor Pl ugi n;

async function setupNodeEvents(on, config) {
awai t addCucunber Preprocessor Pl ugi n(on, config);

on(
"file:preprocessor",
creat eBundl er ({
pl ugi ns: [createEsbuil dPl ugin(config)],
b

)

/1 Make sure to return the config object as it night have been nodified by the plugin.
return config;

}
nodul e. exports = defineConfig({
eZ2e: {
baseUrl: "https://robotwebdenp. her okuapp. con’ ",

specPattern: "**/* feature",
excl udeSpecPattern: [
"Ejst,
P
I
chroneWebSecurity: false,
projectld: "bfi83g",
supportFile: false,
set upNodeEvent s

b

The configuration of @adebal | / cypr ess- cucunber - pr epr ocessor
can either be done on a JSON file . cypr ess- cucumnber - prepr ocessorrc. j son or within package. j son.

Next, you may find an example of the contents of package.json.

package.json

{
"name": "tutorial-js-cypress-cucunber”,
"version": "1.0.0",
"description": "An exanple for Cypress and Cucunber usage using Robot |ogin denp website",
"mai n": "index.js",
"scripts": {
"cypress:open:|local": "CYPRESS_ENvV=l ocal host npm run cypress: open”,
"cypress: open: prod": " CYPRESS_ENV=production npm run cypress: open",
"cypress:open": "npx cypress open",
"test:local": "CYPRESS _ENv=| ocal host npmrun test --spec 'cypress/integration/**/* feature",
"test:prod": "CYPRESS_ENvV=production npmrun test",
"test": "npx cypress run --spec 'features/**/*. feature'",
"test:debug:local": "CYPRESS_ENV=l ocal host npm run test:debug",
"t est:debug: prod": "CYPRESS_ENV=producti on npmrun test:debug",
"test:debug": "npx cypress run --headed --browser chrone --env TAGS=' @2e-test’' --spec 'cypress/integration
[**]* feature'"
},
"aut hor": "Xbl end",
"license": "BSD-3-C ause",
"dependenci es": {
"axios": "70.18.0",
"fs-extra": "~7.0.1",
"glob": "A7.1.7"
H
"devDependenci es": {
" @adebal | / cypress-cucunber - preprocessor”: "~13.0.2",
" @ahnut ov/ cypr ess-esbui | d- preprocessor": "72.1.3",
"@ypress/ webpack- preprocessor": "latest",
"cypress": "~10.8.0",
"esbuild": "~0.14.45",
"eslint": "~5.13.0",
"eslint-config-airbnb-base": "712.1.0",
"eslint-config-prettier": "72.9.0",
"eslint-plugin-cypress": "~2.11.3",
"eslint-plugin-inport": "~2. 23.4",
"eslint-plugin-prettier": ""2.6.0",
"husky": "~1.3.1",
"lint-staged": "~8.1.3"
},
"cypress-cucunber - preprocessor": {
"json": {
"enabl ed": true,
"formatter": "/usr/local/bin/cucunber-json-formatter",
"output": "cucunber-report.json"
}
},
"husky": {
"hooks": {
"pre-commit": "lint-staged"
}
H
"lint-staged": {
"Fojst |
"eslint",
"git add"
]
}
}

We need to have the cucunber - j son-f or mat t er tool, which can be downloaded from the respective GitHub repository. Make sure you pick the correct
binary for your environment.

This tool is necessary to convert the Cucumber messages protobuf (*.ndjson file) report generated by @adebal | / cypr ess- cucunber - pr epr ocessor

https://github.com/cucumber/json-formatter/releases

example of Bash script to download hte cucumber-json-formatter tool for Linux

wget https://github. com cucunber/json-formatter/rel eases/ downl oad/ v19. 0. 0/ cucunber -j son-formatter-Iinux-and64 -
O /usr/1 ocal / bi n/ cucunber-j son-formatter
chmod +x /usr/ | ocal /bin/cucunber-json-formatter

In case you need to interact with Xray REST API at low-level using scripts (e.g. Bash/shell scripts), this tutorial uses an auxiliary file with the credentials
(more info in Global Settings: API Keys).

Example of cloud_auth.json used in this tutorial

{ "client_id": "215FFD69FE4644728C72180000000000", "client _secret":
"1c00f 8f 22f 56a8684d7c18cd6147ce2787d95e4da9f 3bf bOaf 8f 020000000000" }

Before moving into the actual implementation, we need to decide is which workflow we'll use: do we want to use Xray/Jira as the master for writing the
declarative specification (i.e. the Gherkin based Scenarios), or do we want to manage those outside using some editor and store them in Git, for example?

@ Learn more

Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview of the possible workflows.

The place that you'll use to edit the Cucumber Scenarios will affect your workflow. There are teams that prefer to edit Cucumber Scenarios in
Jira using Xray, while there others that prefer to edit them by writing the .feature files by hand using some IDE.

Using Jira and Xray as master
This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).
The overall flow would be something like this:

1. create Scenario/Scenario Outline as a Test in Jira; usually, it would be linked to an existing “requirement”/Story (i.e. created from the respective
issue screen)

. implement the code related to Gherkin statements/steps and store it in Git, for example

. generate .feature files based on the specification made in Jira

. checkout the code from Git

. run the tests in the ClI

. import the results back to Jira

OO0 WN

Usually, you would start by having a Story, or similar (e.g. "requirement”), to describe the behavior of a certain feature and use that to drive your testing.

If you have it, then you can just use the "Create Test" on that issue to create the Scenario/Scenario Outline and have it automatically linked back to the
Story/"requirement".

Otherwise, you can create the Test using the standard (issue) Create action from Jira's top menu.

https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+API+Keys
https://docs.getxray.app/pages/viewpage.action?pageId=31622264

Projects / B Calculator / [J CALC-632

As a user, | can login the application

@ Attach Create subtask @ Linkissue v = TestCoverage +ee

Description

As a user, | can login the application

Test Coverage

Create new Sub Test Execution Create new Test

No Tests are associated with this issue. m

Projects / B Calculator / [} CALC-633

As a user, | can logout the application

@ Attach Create subtask ¢ Linkissue v = TestCoverage ee»

Description

As a user, | can logout the application

Test Coverage

Create new Sub Test Execution Create new Test

No Tests are associated with this issue. m

In this case, we'll create a Cucumber Scenario.

We need to create the Test issue first and fill out the Gherkin statements later on in the Test issue screen.

Create issue Import issues Configure fields v

Project”
E3 Calculator (CALC) v

Issue Type"

@ Test v @

Some issue types are il due to it ible field i ion and/or workflow associations.

Summary”

Valid Login

Components
None
Attachment

(4 Drop files to attach, or browse.
Description
Stylev |[B I U Aviuv|@v @ = E @y +v ~

Tests As a user, | can logout the application

ao

Linked Issues
tests v

Issue

v o

OcCreate another Cancel

Projects / @ Calculator / [CALC-634

Description

Tests As a user, | can logout the application

Linked issues

tests

[} cALc-633 As auser, | can logout the application

1 TtopoO

Test Details

Manual v ——

-

Generic

Cucumber

There are no steps defined.

Create Step Open Dialog Import v

Exploratory

ses

Test Repository

Projects / B Calculator / [CALC-634

Description

Tests As a user, | can logout the application

Linked issues -

tests

[IJ cALc-633 As a user, | can logout the application 1 Topo

Test Details

Cucumber v Test Repository

Scenario

1 Given browser is opened to login page
2 When user "demo" logs in with password "mode"
3 Then welcome page should be open

After the Test is created it will impact the coverage of related "requirement”, if any.

The coverage and the test results can be tracked in the "requirement" side (e.g. user story). In this case, you may see that coverage changed from being
UNCOVERED to NOTRUN (i.e. covered and with at least one test not run).

Projects / @ Calculator / [J CALC-632

As a user, | can login the application

@ Attach Create subtask 69 Link issue v — Test Coverage ooe

Description

As a user, | can login the application

Linked issues +

is tested by

[cALc-634 Valid Login T To00

Test Coverage

Calculate the Test Coverage for the following scopes. . DTN
Version Test Plan

Test Environment

All Environments ~v —

Final statuses have precedence over non-final.

Status Key Summary Test Status
1 .. ToDpo CALC-634 Valid Login — TODO
1

Additional tests could be created, eventually linked to the same Story or linked to another one (e.g. logout).

The related statement's code is managed outside of Jira and stored in Git, for example.

In Cypress, tests related code is mainly stored under cypr ess/ i nt egr at i on directory, which itself contains several other directories. In this case, we've
organized the assets as follows:

® cypress/support/step_definitions:stepimplementation files, in JavaScript.

O cypress/support/step_definitions/login.js

inport { Gven, Wen, Then } from " @adeball/cypress-cucunber-preprocessor";
i mport LoginPage from'../../pages/|ogin-page';
i mport Logi nResul tsPage from'../../pages/|ogin-results-page';

G ven(/ " browser is opened to |ogin page$/, () => {
Logi nPage. visit();
IOF

When(' user {string} logs in with password {string}', (usernane, password) => {
Logi nPage. ent er _user nane(user nane) ;
Logi nPage. ent er _passwor d(passwor d) ;

Logi nPage. pressLogi n();

IR

Then(/~wel cone page should be open$/, () => {
Logi nResul t sPage. expect ().t oBeSuccessful ();

s

Then(/~error page should be open$/, () =>{
Logi nResul t sPage. expect ().t oBeUnsuccessful ();

s

O cypress/support/step_definitions/logout.js

import { G ven, Wen, Then } from " @adebal | / cypress-cucunber - preprocessor";

i mport Wel conePage from'../../pages/wel cone-page';
i mport Logout Resul tsPage from"'../../pages/|ogout-results-page';

G ven(/"user is on the wel cone page$/, () => {
Wl conePage. visit();

1)

Wen(' user chooses to logout', () =>{
Wl conePage. pressLogout () ;

s
Then(/ "l ogi n page shoul d be open$/, () => {

Logout Resul t sPage. expect ().t oBeSuccessful ();

s

® cypress/integration/pages: abstraction of different pages, somehow based on the page-objects model

O cypress/integration/pages/login.js

i nport Logi nResul tsPage from'./login-results-page';

const USERNAME_FI ELD = 'input[id=usernane_field]";
const PASSWORD FI ELD = 'input[id=password_field]";
const LOG N_BUTTON = "input[type=submt]';

const LOG N_TEXT = 'LOG N ;

cl ass Logi nPage {
static visit() {
cy.visit('/");

}

static enter_usernanme(usernane) {
cy. get (USERNAVE_FI ELD)
.type(usernane);

}

static enter_password(password) {
cy. get (PASSWORD_FI ELD)
.type(password);
}

static pressLogin() {
cy.get (LOG N_BUTTON) . cont ai ns(LOG N_TEXT)
.click();
return new Logi nResul t sPage() ;

}
}

export default Logi nPage;

O cypressl/integration/pages/login-results-page.js
const RESULT_HEADER = ' hl';
cl ass Logi nResul t sPage {
static expect() {
return {
toBeSuccessful: () =>{

cy. get (RESULT_HEADER) . shoul d(' have.text', 'Wlcome Page')
H

toBeUnsuccessful: () => {
cy. get (RESULT_HEADER) . shoul d(' have.text', 'Error Page')

export default Logi nResult sPage;

© cypressl/integration/pages/logout-results-page.js

const RESULT_HEADER = ' hl';
cl ass Logout Resul t sPage {
static expect() {
return {

toBeSuccessful: () => {
cy. get (RESULT_HEADER) . shoul d(' have.text', 'Login Page')

export default Logout Result sPage;

© cypressl/integration/pages/welcome-page.js

inport Logi nPage from'. /I ogin-page'

const LOGOUT_LI NK ta';
const LOGOUT_TEXT = 'l ogout';

cl ass Wl conePage {
static visit() {
cy.visit('/welcome.htnl');

}

static pressLogout () {
cy. get (LOGQUT_LI NK) . cont ai ns(LOGOUT_TEXT)
.click();
return new Logi nPage();

}
}

export default Wl conePage;

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the Export to Cucumber Ul action from within the Test
/Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

¢ use the Ul
Projects / @ Calculator / [CALC-634 F o B -t'
Valid Login ToDo v Log work
= Add fl
@ ¢ B8 o - ag
Assignee Unassigned
Description Xray - Document Generator
P Reporter @& sergio Freire Y
Tests As a user, | can logout the application Convert to Subtask
Development I Createbranch \ove
Linked issues + Clone
Labels None
tests Print
[) CALC-633 As a user, | can logout the application 1 1op0 Revision None Export XML
. Export Word
Priority 1+ Medium
NEW JIRA ISSUE VIEW
Test Details
Automation % Rule executions Show me the highlights
Test Repository
Clcubel v Find out more
Test Status. Open Test Status
Scenario Turn off for now
1 Given browser is opened to login page v Show 6 more fields See the old view
2 When user "demo” logs in with password "mode” OriginalEstimate, Time tracking, Epic Lk, Compone (.
3 Then welcome page should be open Configure
o

® use the REST API (more info here)
o example of a shell script to export/generate .features from Xray
#! / bi n/ bash
token=$(curl -H "Content-Type: application/json" -X POST --data @cloud_auth.json" https://xray.
cl oud. get xray. app/ api /v2/ aut henticate| tr -d '"")
curl -H "Content-Type: application/json" -X GET -H "Authorization: Bearer $token" "https://xray.
cl oud. get xray. app/ api / v2/ export/ cucunber ?keys=CALC- 632; CALC- 633" -0 features.zip
rm-rf features/*.feature

unzip -o features.zip -d features

® use one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins)

We will export the features to a new directory named f eat ur es/ on the root folder of your Cypress project (we'll need to tell Cypress to use this folder).

After being exported, the created .feature(s) will contain references to the Test issue key, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in Generate Cucumber Features.

https://docs.getxray.app/display/XRAYCLOUD/Integration+with+Jenkins
https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+Cucumber
https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+Cucumber
https://docs.getxray.app/display/XRAYCLOUD/Generate+Cucumber+Features

features/2_CALC-632.feature

@REQ CALC 632

Feature: As a user, | can login the application
#As a user, | can login the application
#Tests As a user, | can logout the application

@EST_CALC- 634

Scenario: Valid Login
G ven browser is opened to |ogin page
When user "demd" logs in with password "node"
Then wel conme page shoul d be open

#Tests As a user, | can logout the application

@EST_CALC- 635

Scenario: Invalid Login
G ven browser is opened to |ogin page
When user "dummy" logs in with password "password"
Then error page shoul d be open

@EST_CALC- 636

Scenario Qutline: Login Wth Invalid Credentials Should Fail
G ven browser is opened to |ogin page
When user "<usernanme>" logs in wth password "<password>"
Then error page should be open

Exanpl es

| username | password |

| invalid | node |

| dermo | invalid |

| invalid | invalid |

| deno | node
features/1_CALC-633.feature
@REQ CALC- 633
Feature: As a user, | can logout the application

#As a user, | can |ogout the application

@EST_CALC- 637

Scenario: Valid Logout
G ven user is on the wel come page
Wien user chooses to | ogout
Then | ogi n page shoul d be open

To run the tests and produce Cucumber JSON reports(s), we can either use npmor cypr ess command directly.

npmrun test
or instead...

node_nodul es/ cypress/ bin/cypress run --spec 'features/**/* feature'

This will produce one Cucumber JSON report.

After running the tests, results can be imported to Xray via the REST API, or the Import Execution Results action within the Test Execution, or by using
one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins).

https://docs.getxray.app/display/XRAYCLOUD/Integration+with+Jenkins

import_results_cloud.sh

#!/ bi n/ bash

BASE_URL=htt ps://xray. cl oud. get xray. app

token=$(curl -H "Content-Type: application/json" -X POST --data @cl oud_auth.json" "$BASE_URL/api/v2

/authenticate"| tr -d '"")
curl -H "Content-Type: application/json" -X POST -H "Authorization: Bearer $token
json" "$BASE_URL/ api/v2/inport/execution/cucunber"

@ Which Cucumber endpoint/"format” to use?

--data @ cucunber-report.

To import results, you can use two different endpoints/“formats” (endpoints described in Import Execution Results - REST):

1. the "standard cucumber" endpoint
2. the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. /import/execution/cucumber) is simpler but more restrictive: you cannot specify values for custom fields
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue

key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan), if you wish to do so, on the Test Execution that

will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have

to use the "multipart cucumber" endpoint.

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST

Projects / @ Calculator / @ CALC-638

Execution results [1604501240267]

@ Attach Create subtask @ Llinkissue v @ Tests eee

Description

Add a description...

Tests
Create Test o Add v
Overall Execution Status TOTAL TESTS: 4
3PASSED 1 FAILED
| - Filters + 100 v Columns v
Rank* Key Summary Test Type Status Actions
O 1 CALC- Valid Login Cucumber . PASSED g eoe
634
0 2 CALC- Invalid Login Cucumber] PASSED g oo
635
O 3 CALC- Login With Invalid Credentials ~ Cucumber . FAILED g oo
636 Should Fail
O 4 CALC- Valid Logout Cucumber . PASSED = .oo
637
Prev. 1 Next Total 4 issues

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

Projects / @3 Calculator / 3 CALC-638

Execution results [1604501240267]
@ Attach Create subtask (5’) Link issue v GJ Tests eee

Description

Add a description...

Tests

Create Test o Add +

Overall Execution Status

TOTAL TESTS: 4
3 PASSED 1 FAILED
[Filters + 100 v Columns v
Rank* Key Summary Test Type Status Actions
01 CALC- Valid Login Cucumber 1] PASSED
634
O 2 CALC- Invalid Login Cucumber . PASSED con
635
0O 3 CALC- Login With Invalid Credentials Cucumber . FAILED ooe
636 Should Fail
0O 4 CALC- Valid Logout Cucumber [PASSED =0
637
Prev. 1 Next Total 4 issues
O JiraSoftware Yourwork Projects v Filters ~ Dashboards v People « Apps - Q search 20 0@

@ Execution Details

Test Description

>

None

Test Issue Links (1)

>

tests.) CALC-632 As a user, | can login the application £ Tooo
Custom Fields ~
There are no Test Run Custom Fields defined.
Test Details ~
Tost Type: Cucumber
Scenario Type Scenario Outline
Scenario: 1 Given browser is opened to login page
2 When user "<usernane>" logs in with password "<passwords”
3 Then error page should be open
4
5 Examples:
6 | username | password |
7 | invalid | mode |
8 | demo | invalid |
9 | imalid | invlid |
10 ldeno | mode |
Examples N
<username> <password> Ouration Status
> invalid mode 1s788ms LSS
> domo invalid Pl s
\» invalid invalid 11s 119ms.
> demo mode 85 866ms FAILED

A given example can be expanded to see all Gherkin statements and, if available, it is possible to see also the attached screenshot(s).

i1 O JiraSoftware Yourwork Projects v Filters « Dashboards v People « Apps Q Search * 00 @

Custom Fields

There are no Test Run Custom Fields defined.
Test Details =
Test Type: Cucumber
Scenario Type: Scenario Outline
Scenario: 1 Given browser is opened to login page
2 When user "<username>" logs in with password "<password>"
3 Then error page should be open
4
5 Examples:
6 | username | password |
7 | invalid | mode |
8 | demo | invalid |
9 | invalid | invalid |
10 | demo | mode |
Examples ~
D
<username> <password> Duration Status
> invalid mode 15 788ms
> demo invalid 35 617ms
> :;‘M/ invalid 11s 119ms
- 3 mode 8s gsoms (LTINS
Steps
Given browser is opened to login page 3secs
When user "demo logs in with password "mode” secs
[evidence-0.png
Then error page should be open — o) secs FAILED
AssertionError: Timed out retrying: expected '<hl>' to have text 'Error Page!, but the text was ‘Welcome Page'
+ expected - actual
~'Welcome Page'
+Error Page'
at Object toBel herokuapp.com/_¢ _CALC-6! :134:33)
at Context.eval herokuapp.com/_¢ CALC-6321
at Context. Definiti herokuapp.com/_c _CALC-63: +10674:9)
at Context.eval herokuapp.com/_¢ _CALC-6! :10015:35)

Z
(=]
=
()

. in this case, the bug was on the Scenario Outline example which was using a valid username/password combination.

Results are reflected on the covered item (e.g. Story). On its issue screen, coverage now shows that the item is OK based on the latest testing results, that
can also be tracked within the Test Coverage panel bellow.

Projects / € Calculator / [J CALC-632

As a user, | can login the application

@ Attach Create subtask (@ Linkissue v = TestCoverage se¢

Description

As a user, | can login the application

Linked issues +
is tested by

@ cALc-634 Valid Login 1T Topo

[cALc-635 Invalid Login T T0DO

[cALc-636 Login With Invalid Credentials Should Fail T TopO

Test Coverage

Calculate the Test Coverage for the following scopes. O A D T Bl Y
Version Test Plan

Test Environment

All Environments v —_— “

Final statuses have precedence over non-final.

Status Key Summary Test Status
.. T0DO CALC-634 Valid Login PASSED
4 .. Topo CALC-635 Invalid Login PASSED
1 .. Tobpo CALC-636 Login With Invalid Credentials Should Fail B . FAILED

Using Git or other VCS as master

You can edit your .feature files using your IDE outside of Jira (eventually storing them in your VCS using Git, for example) alongside with remaining test
code.

In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility of them and report results against them.

The overall flow would be something like this:

. look at the existing "requirement"/Story issue keys to guide your testing; keep their issue keys

. specify Cucumber/Gherkin .feature files in your IDE supporting Cypress and store it in Git, for example

. implement the code related to Gherkin statements/steps and store it in Git, for example
import/synchronize the .feature files to Xray to provision or update corresponding Test entities
export/generate .feature files from Jira, so that they contain references to Tests and requirements in Jira
. checkout the Cypress related code from Git

. run the tests in the ClI

. import the results back to Jira

ONOUTAWN

Usually, you would start by having a Story, or similar (e.g. "requirement”), to describe the behavior of a certain feature and use that to drive your testing.

Projects / @ Calculator / [J CALC-632

As a user, | can login the application

& Attach Create subtask & Llinkissue v — Test Coverage se»

Description

As a user, | can login the application

Test Coverage

Create new Sub Test Execution Create new Test
No Tests are associated with this issue. m
Projects / @ Calculator / [} CALC-633

As a user, | can logout the application

@ Attach Create subtask @ Llinkissue v — TestCoverage es»

Description

As a user, | can logout the application

Test Coverage

Create new Sub Test Execution Create new Test

No Tests are associated with this issue. m

Having those to guide testing, we could then move to Cypress to describe and implement the Cucumber test scenarios.

In Cypress, tests related code is mainly stored inside the cypr ess/ i nt egr at i on directory, which itself contains several other directories. In this case,
we've organized the assets as follows:

® cypress/support/step_definitions:stepimplementation files, in JavaScript.

O cypress/support/step_definitions/login.js

import { G ven, Wen, Then } from " @adebal | / cypress-cucunber - preprocessor";
i mport Logi nPage from'../../pages/| ogin-page';
i mport Logi nResul tsPage from'../../pages/|ogin-results-page';

G ven(/ browser is opened to |ogin page$/, () => {
Logi nPage. visit();
b

When(' user {string} logs in with password {string}', (usernanme, password) => {
Logi nPage. ent er _user nane(user nane) ;
Logi nPage. ent er _passwor d(passwor d) ;
Logi nPage. pressLogin();

1

Then(/~wel come page shoul d be open$/, () => {
Logi nResul t sPage. expect ().t oBeSuccessful ();

s

Then(/~error page should be open$/, () => {
Logi nResul t sPage. expect ().t oBeUnsuccessful ();

s

© cypress/support/step_definitions/logout.js

import { G ven, Wen, Then } from " @adebal | / cypress-cucunber - preprocessor";

i mport Wel conePage from'../../pages/wel cone-page';
i mport Logout Resul tsPage from"'../../pages/|ogout-results-page';

G ven(/"user is on the wel cone page$/, () => {
Wl conePage. visit();

1)

When(' user chooses to logout', () => {
Wl conePage. pressLogout () ;

s
Then(/ "l ogi n page shoul d be open$/, () => {

Logout Resul t sPage. expect ().t oBeSuccessful ();

s

® cypress/integration/ pages: abstraction of different pages, somehow based on the page-objects model

O cypressl/integration/pages/login.js

i mport Logi nResul tsPage from'./login-results-page';

const USERNAME_FI ELD = 'input[id=usernane_field]";
const PASSWORD_FI ELD = 'input[id=password_field]";
const LOG N_BUTTON = 'input[type=submit]"';

const LOG N_TEXT = 'LOG N ;

cl ass Logi nPage {
static visit() {
cy.visit('/");

}

static enter_username(usernane) {
cy. get (USERNAME_FI ELD)
.type(usernane);

}

static enter_password(password) {
cy. get (PASSWORD FI ELD)
.type(password);
}

static pressLogin() {
cy. get (LOG N_BUTTON) . cont ai ns(LOG N_TEXT)
.click();
return new Logi nResul t sPage();

}
}

export default Logi nPage;

© cypressl/integration/pages/login-results-page.js
const RESULT_HEADER = ' hl';

cl ass Logi nResul t sPage {
static expect() {
return {
toBeSuccessful: () => {
cy. get (RESULT_HEADER) . shoul d(' have. text', ‘Wl conme Page')
b

toBeUnsuccessful : () => {
cy. get (RESULT_HEADER) . shoul d(' have.text', 'Error Page')

export default Logi nResult sPage;

O cypressl/integration/pages/logout-results-page.js

const RESULT_HEADER = ' hl';
cl ass Logout Resul t sPage {
static expect() {
return {

toBeSuccessful: () => {
cy. get (RESULT_HEADER) . shoul d(' have.text', 'Login Page')

export default Logout Resul t sPage;

O cypressl/integration/pages/welcome-page.js

i mport Logi nPage from'./l ogi n-page’

const LOGOUT_LI NK ta';
const LOGOUT_TEXT = 'l ogout"';

cl ass Wl conePage {
static visit() {
cy.visit('/welcone.htm"');

}

static pressLogout () {
cy. get (LOGOUT_LI NK) . cont ai ns(LOGOUT_TEXT)
.click();
return new Logi nPage();

}
}

export default Wl conePage;

® cypress/integration/login: Cucumber .feature files, containing the tests as Gherkin Scenario(s)/Scenario Outline(s). Please note that
each "Feature: <..>" section should be tagged with the issue key of the corresponding "requirement"/story in Jira. You may need to add a prefix (e.
g. "REQ_") before the issue key, depending on an Xray global setting.

https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+Cucumber

O cypressl/integration/login/login.feature

@REQ _CALC- 6232
Feature: As a user, | can login the applicaiton

Scenario: Valid Login
G ven browser is opened to |ogin page
Wien user "denmd" logs in with password "node"
Then wel come page shoul d be open

Scenario: Invalid Login
G ven browser is opened to |ogin page
When user "dummy" logs in with password "password"
Then error page should be open

Scenario Qutline: Login Wth Invalid Credentials Should Fail
G ven browser is opened to | ogin page
When user "<usernanme>" logs in wth password "<password>"
Then error page should be open

Exanpl es:
username	password
invalid	node
deno	invalid
invalid	invalid
dero	node

O cypressl/integration/login/logout.feature

@REQ CALC- 633
Feature: As a user, | can |ogout the application

Scenario: Valid Logout
G ven user is on the wel cone page
Wien user chooses to | ogout
Then | ogi n page shoul d be open

Before running the tests in the CI environment, you need to import your .feature files to Xray/Jira; you can invoke the REST API directly or use one of the
available plugins/tutorials for Cl tools.

example of a shell script to import/synchronize Scenario(s)/Background(s) from .features to Jira and Xray

#!/ bi n/ bash

BASE_URL=htt ps://xray. cl oud. get xray. app
PRQIECT=CALC

zip -r features.zip cypress/integration/ -i *.feature

token=$(curl -H "Content-Type: application/json" -X POST --data @cl oud_auth.json" "$BASE_URL/api/v2
[aut henticate"| tr -d '"")

curl -H "Content-Type: nultipart/formdata” -H "Authorization: Bearer $token" -F "file=@eatures.zip"
"$BASE_URL/ api / v2/i nport/f eat ur e?pr oj ect Key=$PRQIECT"

@ Please note

Each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again then Xray can
update the existent Test and don't create any duplicated tests.

Afterward, you can export those features out of Jira based on some criteria, so they are properly tagged with corresponding issue keys; this is important
because results need to contain these references.

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the Export to Cucumber Ul action from within the Test
/Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

® use the Ul
Projects / @ Calculator / @ CALC-634 & o1 —QH
Valid Login ToDo Log work
P @ g - Add flag
Assignee Unassigned Xray - Export to Cucumber
Description Xray - Document Generator
P! Reporter @ sergio Freire Y
Tests As a user, | can logout the application Convert to Subtask
Development > Createbranch pove
Linked issues + Clone
Labels None
tests Print
[CALC-633 As a user, | can logout the application t Tobo Revision None Export XML
. Export Word
Priority t Medium
NEW JIRA ISSUE VIEW
Test Details
Automation % Rule executions Show me the highlights
Test Repository
Clctnbey v Find out more
Test Status Open Test Status
Scenario Turn off for now
1 Given browser is opened to login page v Show 6 more fields See the old view
2 When user "demo” logs in with password "mode” Original Estimate, Time tracking, Epic Link, Compane
3 Then welcome page should be open onfigure
[e]

® use the REST API (more info here)

o example of a shell script to export/generate .features from Xray

#!/ bi n/ bash

BASE_URL=htt ps://xray. cl oud. get xray. app

token=$(curl -H "Content-Type: application/json" -X POST --data @cl oud_auth.json" $BASE_URL/ api/v2
[authenticate| tr -d '"")

curl -H "Content-Type: application/json" -X GET -H "Authorization: Bearer $token" "$BASE _URL/api/v2
/ export/ cucunber ?keys=CALC- 632; CALC- 633" -0 features.zip

rm-rf features/*.feature
unzip -o features.zip -d features

® use one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins)

For Cl only purpose, we will export the features to a new temporary directory named f eat ur es/ on the root folder of your Cypress project (we'll need to
tell Cypress to use this folder). Please note that while implementing the tests, .feature files should be edited inside the cypress/integration/login folder, in
this case;

After being exported, the created .feature(s) will contain references to the Test issue keys, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement"” issue key, if that's the case. The naming of these files is detailed in Generate Cucumber Features.

https://docs.getxray.app/display/XRAYCLOUD/Integration+with+Jenkins
https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+Cucumber
https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+Cucumber
https://docs.getxray.app/display/XRAYCLOUD/Generate+Cucumber+Features

features/2_CALC-632.feature

@REQ CALC- 632

Feature: As a user, | can login the application
#As a user, | can login the application
#Tests As a user, | can logout the application

@EST_CALC- 634

Scenario: Valid Login
G ven browser is opened to |ogin page
Wien user "denp" logs in with password "node"
Then wel cone page shoul d be open

#Tests As a user, | can |ogout the application

@EST_CALC- 635

Scenario: Invalid Login
G ven browser is opened to |ogin page
When user "dummy" logs in with password "password"
Then error page should be open

@EST_CALC- 636

Scenario Qutline: Login Wth Invalid Credentials Should Fail
G ven browser is opened to |ogin page
Wien user "<usernanme>" |logs in wth password "<password>"
Then error page should be open

Exanpl es:
usernane	password
invalid	node
dermo	invalid
invalid	invalid
deno	node

To run the tests and produce Cucumber JSON reports(s), we can either use npmor cypr ess command directly.

npmrun test
or instead...

node_nodul es/ cypress/ bin/cypress run --spec 'features/**/* feature'

This will produce one Cucumber JSON report.

After running the tests, results can be imported to Xray via the REST API, or the Import Execution Results action within the Test Execution, or by using
one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins).

Example of shell script to import results (e.g. import_results_cloud.sh)

#!/ bi n/ bash

BASE_URL=htt ps://xray. cl oud. get xray. app

token=$(curl -H "Content-Type: application/json" -X POST --data @cl oud_auth.json" "$BASE_URL/api/v2
/authenticate"| tr -d "'"")

curl -H "Content-Type: application/json" -X POST -H "Authorization: Bearer $token" --data @ cucunber-report.
json" "$BASE_URL/ api/v2/inport/execution/cucunber"

https://docs.getxray.app/display/XRAYCLOUD/Integration+with+Jenkins

(D Which Cucumber endpoint/"format” to use?

To import results, you can use two different endpoints/“formats" (endpoints described in Import Execution Results - REST):

1. the "standard cucumber" endpoint
2. the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. /import/execution/cucumber) is simpler but more restrictive: you cannot specify values for custom fields
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan), if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

Projects / @ Calculator / @ CALC-639

Execution results [1604502815636]

@ Attach Create subtask @ Linkissue v [Tests oee

Description

Add a description...

Tests
Create Test © Add
Overall Execution Status TOTAL TESTS: 4
]
PASSED 1 FAILED
| - Filters + 100 v Columns v
Rank* Key Summary Test Type Status Actions
O 1 CALC- Valid Login Cucumber PASSED g oo
634
O 2 CALC- Invalid Login Cucumber PASSED g oo
635
0O 3 CALC- Login With Invalid Credentials Cucumber . FAILED = voe
636 Should Fail
O 4 CALC- Valid Logout Cucumber PASSED = .oe
637
1 Total 4 issues

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST

Projects / @ Calculator / @ CALC-639

Execution results [1604502815636]

@ Attach Create subtask @@ Linkissue v [Tests

Description

Add a description...

Tests

Overall Execution Status

Create Test © Add +

TOTAL TESTS: 4

3PASSED 1 FAILED

e v Filters
Rank* Key Summary Test Type

o1 CALC- Valid Login Cucumber
634

o 2 CALC- Invalid Login Cucumber
635

O 3 CALC- Login With Invalid Credentials Cucumber
636 Should Fail

O 4 CALC- Valid Logout Cucumber
637

Prev 1 Next

© JiraSoftware Yourwork Projects v Filters v Dashboards v People v Apps v

e Execution Details

Test Description

None

Test Issue Links (1)

tests [l CALC-632 As a user, | can login the application

Custom Fields

There are no Test Run Custom Fields defined.

Test Details
Test Type: Cucumber
Scenario Type: Scenario Outline
Scenario: 1 Given browser is opened to login page
2 When user "<username>" logs in with password "<password>"
3 Then error page should be open
4
5 Examples:
6 | username | password |
7 | invalid | mode |
8 | demo | invalid |
9 | invalid | invalid |
10 | demo | mode I
Examples

100 v Columns v

Status Actions
7] pASSED g
[PASSED
[IR R——
[PAsSED =0 e

Total 4 issues

* 0O 0@

>

>

>

>

<username>

> invalid
> demo
\ > invalid
> demo

A given example can be expanded to see all Gherkin statements and, if available, it is possible to see also the attached screenshot(s).

<password> Duration
mode 15 788ms
invalid 3s 617ms
invalid 11s 119ms
mode 8s 866ms

© JiraSoftware Yourwork Projects v Filters v Dashboards v People v Apps

Q Search * 0 0@
Custom Fields -~
There are no Test Run Custom Fields defined.
Test Details =
Test Type: Cucumber
Scenario Type: Scenario Outline
Scenario: 1 Given browser is opened to login page
2 When user "<username>" logs in with password "<passwords"
3 Then error page should be open
4
5 Examples:
6 | username | password |
7 | invalid | mode |
8 | demo | invalid |
9 | invalid | invalid |
10 | demo | mode |
Examples ~
D
<username> <password> Duration Status
> invalid mode 1s 788ms
> demo invalid 35 617ms
> w invalid 11s 119ms
- 3 mode 8s gsoms (LTINS
Steps
Given browser is opened to login page 3secs
When user "demo logs in with password "mode” secs
[evidence-0.png
Then error page should be open — o) secs FAILED
AssertionError: Timed out retrying: expected '<hl>' to have text 'Error Page!, but the text was ‘Welcome Page'
+ expected - actual
~'Welcome Page'
+Error Page'
at Object toBel herokuapp.com/_¢ _CALC-6! :134:33)
at Context.eval herokuapp.com/_¢ CALC-6321
at Context. Definiti herokuapp.com/_c _CALC-63: +10674:9)
at Context.eval herokuapp.com/_¢) CALC-6! :10015:35)

Note: in this case, the bug was on the Scenario Outline example which was using a valid username/password combination.

Results are reflected on the covered item (e.g. Story). On its issue screen, coverage now shows that the item is OK based on the latest testing results, that
can also be tracked within the Test Coverage panel bellow.

Projects / @ Calculator / [J CALC-632

As a user, | can login the application

& Attach Create subtask (@ Linkissue v = TestCoverage see

Description

As a user, | can login the application

Linked issues

+
is tested by
@ cALCc-634 Valid Login T Topo
[cALc-635 Invalid Login 1 To0DO
[cALc-636 Login With Invalid Credentials Should Fail T ToDO

Test Coverage

Calculate the Test Coverage for the following scopes. B IEr S T B DT
Version Test Plan

Test Environment

All Environments v —| TS

Final statuses have precedence over non-final.

Status Key Summary Test Status
1 .. Tobo CALC-634 Valid Login PASSED
41 .. Tobo CALC-635 Invalid Login PASSED
1 .. Tobo CALC-636 Login With Invalid Credentials Should Fail —— - FAILED

If we change the specification (i.e. the Gherkin scenarios), we need to import the .feature(s) once again.

Therefore, in the Cl we always need to start by importing the .feature file(s) to keep Jira/Xray on synch.

FAQ and Recommendations

Please see this page.

References

® Cypress
® Cypress documentation
® @badeball/cypress-cucumber-preprocessor

https://docs.getxray.app/pages/viewpage.action?pageId=31622264#TestinginBDDwithGherkinbasedframeworks(e.g.Cucumber)-Commonproblems
https://www.cypress.io/
https://docs.cypress.io/
https://github.com/badeball/cypress-cucumber-preprocessor

	Testing using Cypress and Cucumber in JavaScript

