
Working with Test Environments

What is a Test Environment
Benefits of using Test Environments
Test Environments in Xray at a glance
How it works
How to use
Using multiple environments at the same time

How to use
Example

Advanced
Test Environments and the TestRunStatus custom field

Tips and Recommendations
Do's
Don'ts

What is a Test Environment
Generically speaking, a test environment is an environment that contains all necessary elements, including the SUT, so you can perform testing on it.

Depending on your context, a test environment may represent:

a testing stage (e.g. "development", "staging", "preproduction", "production")
a device model or device operating system (e.g. "Android", "iOS")
an operating system (e.g. "Windows", "macOS", "Linux")
browser (e.g. "Edge", "Chrome", "Firefox")

Thus, semantics of what a "Test Environment" represents depends on your specific context.

Benefits of using Test Environments
avoid duplication of Tests, whenever you have to run the same test on different environments
ability to track the latest status of tests on different environments
ability to track coverage on each environment
ability to track overall coverage, considering the coverage/results on each environment
ability to perform reporting, including traceability, per each environment or globally (i.e. considering all results on all different environments)

Test Environments in Xray at a glance
The current status of a Test is generally calculated by looking at the Test's last execution (more detail here). However, this does not work well if you
execute the same Test in two different test environments (e.g., devices) and you want the two results to be consolidated.

Within a Test Execution, you may specify the (s) where the tests will be executed in the respective attribute. A Test Environment is Test Environment
similar to a label, but Xray has special logic to deal with it.

If you use Test Environments, you may reuse the same Test for multiple test environments and create Test Executions for each one. If you don't use Test
Environments and you want to track tests for multiple environments (e.g., devices), then the only way to do it is to create multiple tests, one per each test
environment.

Let's say that you have executions for two Test Environments: "Android" and "iOS". The test is considered as PASS only if the latest executions for
Android and iOS are PASS; otherwise, it will be FAIL.both

"Test Environment" is a concept introduced in Xray v2.

Here is a that explains Test Environments and how you can use them.short video

Please note

In Xray, Test Environments are focused on the execution aspect, providing the means to schedule tests and their results in analyze
different environments.

Thus, they're explicitly associated with Test Execution issues.

https://docs.getxray.app/display/XRAY/Configuring+Statuses+Custom+Fields
https://www.youtube.com/watch?v=fokqOe92OQM

Note: If you don't use Test Environments, then only the latest result matters for assessing the current status of the Test.

How it works
Let's say we have a Test being executed two times. We will start by creating Test Executions TE1 and TE2.

TE2 will be executed after TE1, so TE1 is considered older.

Below are example scenarios and shows how the overall, of the Test is calculated in each case. consolidated status

If you have a mix of Test Executions (i.e., with and without Test Environment as in scenario D), it will be treated the same way as scenarios A, B, and C.

Scenario Test
Environment
(s) of TE 1

Test
Environment
(s) of TE 2

Test
run
status
in TE1

Test
run
status
in TE2

Calculated value for the overall,
consolidated status of the Test (i.e. for
the "All Environments")

Other

A Android iOS PASS PASS PASS The test will be considered to be
PASS in both Android and iOS
environments.

B iOS iOS PASS FAIL FAIL The test will be considered to be FAIL
in iOS.

C iOS iOS FAIL PASS PASS The test will be considered to be
PASS in iOS.

D iOS - FAIL PASS FAIL The test will be considered to be FAIL
in iOS and PASS for the empty
environment.

E - - PASS FAIL FAIL The test will be considered to be FAIL
for the empty environment.

F - - FAIL PASS PASS The test will be considered to be
PASS for the empty environment.

How to use
Whenever creating a Test Execution, you must set the Test Environment in which the execution will be executed. You can use this field as a simple label:
just add the environment or reuse a previously created one.

Please see some important ahead.Tips and Recommendations

Creating a Test Execution

Please note

The Test Environment is treated similarly to any other environment having a well-defined name.empty

Test Execution for “android” Test Environment

Test Execution for “ios” Test Environment

Tracking the results on different environments

The Test Environments column is shown in your Test Runs table so you can distinguish each execution of the Test between the different environments.

This information can be seen in the Test issue screen (see next screenshot) or in other places that show a list of Test Runs (e.g. Test Plan issue screen).

The same test has been executed in both Test Environments (a Test Execution per Test Environment).

Analyzing the impact of the results on different environments

Results obtained for Test Environments will impact coverage.

Considering the previous screenshot, the "Requirement Status" custom field for the Test issue will show because the Test has failed for one of the NOK
environments. This information is of the environment picker below within the "Test Coverage" section, which in turn is used to calculate the independent
coverage on request for the selected scope, showing it on the right side along with the corresponding test results.

If you want to analyze the coverage for the requirement (e.g. "story") and show the latest results on that environment, just use the picker on the "Test
Coverage" section. As seen ahead, this will produce different results because different results were obtained in different environments.

Please check to learn more about coverage analysis possibilities.Coverage Analysis

It is also possible to analyze testing thoroughly considering Test Environments; this analysis can be done using the or the Traceability Report Overall
, among others.Coverage Report

https://docs.getxray.app/display/XRAY/Coverage+Analysis
https://docs.getxray.app/display/XRAY/Traceability+Report
https://docs.getxray.app/display/XRAY/Overall+Requirement+Coverage+Report
https://docs.getxray.app/display/XRAY/Overall+Requirement+Coverage+Report

The exact behavior upon choosing a specific Test Environment depends on the report itself but, either explicitly or implicitly, Test Runs will be filtered by
the selected Test Environment and reports will reflect it.

Traceability Report being used to analyze the results on the "edge" test environment.

Traceability Report being used to analyze the results on the "chrome" test environment.

Analyzing coverage of "requirements" on the "edge" test environment.

Analyzing coverage of "requirements" on the "chrome" test environment.

Using multiple environments at the same time
Sometimes, you may have multiple categorizations for a given environment; in theory, you can think as it being something multidimensional.

Consider a very basic example: whenever performing web/UI based testing you will be using a browser and an operating system and you may want to
analyze the results per a browser perspective or per an operating system perspective.

The recommended way to deal with environments having multiple dimensions is to treat each dimension (e.g. browser name, operating system
name) individually. In other words, add the values of each dimension to the "Test Environments" field separately.

Whenever you assign "mac" and "edge" to the Test Environments of a given Test Execution, it's equivalent to saying that your Test Run is scheduled for
/was run in the "mac" and also in the "edge" environment.

This approach will limit the number of environments to the total number of possible values for each dimension, as opposed to having <number_of_values_d
* *... environments.imension_1> <number_of_values_dimension_2>

The drawback of this solution is that you won't be able to analyze the results for an environment tagged as "mac" and "edge" at the same time, for
example; you can just analyze results from a specific dimension.

How to use

Assign each environment (e.g. name of operation system, name of browser vendor) as you do for a single environment; in other words, just add the
multiple environment names as .multiple, distinct labels

Whenever creating a Test Execution (e.g. from a Test Plan)

To have in mind

One way to deal with these kinds of environments would be to flatten them and treat them as usual, i.e. you could name the environment such
as “windows_edge” or “mac_chrome” but…

You could have a ton of composed environments which wouldn’t be manageable at all
You couldn’t analyze coverage just from the perspective of one of those variables (e.g. “mac” or “edge”); you would be restricted to
analyze it from the perspective of the composed environment

1.
2.
3.

Whenever updating an existing Test Execution

Example

Test executed in the context of Test Execution assigned to several environments at the same time

windows, chrome (fail)
windows, edge (pass)
mac, edge (pass)

The calculated status of the test, per Test environment, will be the following.

Status Why?

windows PASS due to the last result obtained in "windows" environment on CALC-
5262

mac PASS due to the last result obtained in the "mac" environment on CALC-
5263

chrome FAIL due to the last result obtained in "chrome" environment on CALC-
5261

edge PASS due to the last result obtained in "edge" environment on CALC-5263

"All Environments"

(if analyzing the status of the test without identifying a
specific environment)

FAIL as the last result for one of the environments ("chrome") was FAIL (i.
e. on CALC-5261)

Advanced

Test Environments and the TestRunStatus custom field

The "TestRunStatus" custom field is associated with Test issues and can be used to provide information about the latest status of your test; more info .here

This custom field calculates the status of the test for "all environments" (i.e. the consolidated status), giving you a high-level view; it cannot be configured
to show the status for a specific environment.

Internally, this field will store the status of the test for all possible scopes, which besides other things includes the information about the status in all
different environments.

Tips and Recommendations

Do's

Use Test Environments only if you want to run the Test case in different environments and track results per each environment. same
Simplify the names of Test Environments (i.e. lowercase it, shorten it)

Example: macOS => mac
Evaluate if you really need to assign multiple environments at the same time; using just one is preferable if you can afford that simplicity

If you start using Test Environments in your Test Executions, then it's not only your test status calculation that will change (i.e. the one stored in
the TestRunStatus custom field). All custom fields that depend on it (e.g., Requirement status, Test Sets status) will change. Consequently, the
requirement coverage calculation and all associated charts/gadgets are also affected.

https://docs.getxray.app/display/XRAY/Using+custom+fields

Don'ts

Don't create thousands of Test Environments as it will harden their usage and add some performance overhead
Don't try to do data-driven testing using Test Environments; they're not tailored for that

Learn more

For advanced Test Environment management capabilities, please check our .Integration with Apwide Golive

Please note

Besides other usage issues, if you have a large number of environments (>500), it will impact the calculations that need to be done and the size
of the Lucene index.

Please try to have a limited, restricted, and well-defined list of Test Environments.

https://docs.getxray.app/display/XRAY/Integration+with+Apwide+Golive

	Working with Test Environments

